Cloud And Shadow Assessment (CASA)

CASA is a fully automated software program for the per-pixel detection of clouds and cloud shadows from medium- (e.g., Landsat, SPOT, AWiFS) and high- (e.g., Ikonos, QuickBird, OrbView) resolution imagery without the use of thermal data.

CASA is an object-based feature extraction program which utilizes a complex combination of spectral, spatial, and contextual information available in the imagery and a hierarchical self-learning logic for accurate detection of clouds and their shadows.
CASA Specifications

CASA is a stand-alone, platform-independent program that can be run on Windows, Linux, and UNIX.

CASA has a simple GUI and Open Source Viewer for non-GIS/non-programming experts, or can be called via a batch program within any IP software program in order to seamlessly integrate it into a standard pre-processing / production sequence.

Average run-times for medium-resolution scenes are between 3 to 10 minutes on a standard development laptop (2 GHz).
CASA Specifications

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>CASA works with images in their native data type (e.g., 8-bit data for Landsat 5 and 7, 11-bit data for Ikonos and Quickbird, etc..)</td>
<td>Raster mask presenting per pixel cloud and cloud shadow contamination of the scene. Different IDs are assigned to dense clouds, light clouds / haze, and cloud shadows.</td>
</tr>
<tr>
<td>No thermal or Panchromatic data is required.</td>
<td>Text file with scene total and per quad % cloud and cloud shadow contamination and an accuracy measure of cloud detection.</td>
</tr>
<tr>
<td>CASA supports GeoTIFF and ERDAS Imagine’s HFA <code>.img</code> I/O formats. Other formats are to be incorporated (e.g., NITF)</td>
<td></td>
</tr>
</tbody>
</table>
CASA Validation

<table>
<thead>
<tr>
<th>Imagery</th>
<th>No. of Scenes</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ikonos 2</td>
<td>216</td>
<td>11-bit, 4 MS bands (B-G-R-NIR)</td>
</tr>
<tr>
<td>QuickBird</td>
<td>44</td>
<td>11-bit, 4 MS bands (B-G-R-NIR)</td>
</tr>
<tr>
<td>AWiFS</td>
<td></td>
<td>planned</td>
</tr>
<tr>
<td>OrbView</td>
<td></td>
<td>planned</td>
</tr>
<tr>
<td>SPOT</td>
<td></td>
<td>planned</td>
</tr>
</tbody>
</table>

Validation Strategy: Correlation of CASA results to independent visual estimates of cloud cover. Landsat 7 ETM+ results were also compared to ACCA (Automated Cloud Cover Assessment), NASA’s operational cloud assessment system which requires thermal data.

Each scene was visually inspected to assess, separately, percent dense cloud cover, percent light, transparent cloud and haze cover, and percent of total cloud and light cloud / haze cover. For each scene, two independent assessments of cloud cover were made. Then results were compared and cases of significant disagreement were resolved by scene re-evaluation simultaneously by both operators.
CASA-Landsat Validation

Cloud Cover

R^2 = 0.81

CASA Truth Set

Cloud Cover

R^2 = 0.35

ACCA Truth Set
CASA-Landsat Validation

<table>
<thead>
<tr>
<th>Error Level</th>
<th>Number of Scenes</th>
<th>Percent of Scenes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 5%</td>
<td>155</td>
<td>81%</td>
</tr>
<tr>
<td>0 to 10%</td>
<td>179</td>
<td>94%</td>
</tr>
<tr>
<td>0 to 15%</td>
<td>188</td>
<td>98%</td>
</tr>
<tr>
<td>0 to 20%</td>
<td>189</td>
<td>99%</td>
</tr>
<tr>
<td>0 to 25%</td>
<td>191</td>
<td>100%</td>
</tr>
<tr>
<td>Max Error</td>
<td></td>
<td>25%</td>
</tr>
</tbody>
</table>

CASA is within 10% of the visual estimate for more than 90% of all images (n=194) tested

Summary of statistical results – correlation coefficients:

<table>
<thead>
<tr>
<th></th>
<th>Overall</th>
<th>Atlantic</th>
<th>Pacific</th>
<th>Tropical</th>
<th>Polar</th>
<th>Leaf On</th>
<th>Leaf Off</th>
</tr>
</thead>
<tbody>
<tr>
<td>CASA vs. Visual</td>
<td>90%</td>
<td>92%</td>
<td>79%</td>
<td>89%</td>
<td>91%</td>
<td>83%</td>
<td>94%</td>
</tr>
<tr>
<td>ACCA vs. Visual</td>
<td>59%</td>
<td>70%</td>
<td>57%</td>
<td>51%</td>
<td>39%</td>
<td>63%</td>
<td>59%</td>
</tr>
<tr>
<td>CASA vs. ACCA</td>
<td>46%</td>
<td>61%</td>
<td>42%</td>
<td>44%</td>
<td>30%</td>
<td>46%</td>
<td>50%</td>
</tr>
</tbody>
</table>
CASA-Ikonos Validation: Dense Cloud Cover

Dense Cloud Cover (all scenes)

R² = 0.91

Dense Cloud Cover (all scenes)

R² = 0.71
CASA-Ikonos Validation: Light CC / Haze & Total Cloud Cover

![Graph 1: Light, Transparent Cloud Cover / Haze (all scenes)](R^2 = 0.39)

![Graph 2: Total Cloud Cover (all scenes)](R^2 = 0.89)
CASA-Ikonos Validation

CASA is within 10% of the visual estimate for more than 90% of all images tested.
Coverage report for c:\casa\po_187902_0000000_casa_result.tif (%):

Total cloud cover: 16.12
Total haze cover: 3.36
Total shadow cover: 14.52

UL cloud cover: 14.86
UL haze cover: 3.12
UL shadow cover: 14.86
UR cloud cover: 15.39
UR haze cover: 3.03
UR shadow cover: 14.12
LL cloud cover: 19.51
LL haze cover: 4.42
LL shadow cover: 16.22
LR cloud cover: 12.77
LR haze cover: 2.32
LR shadow cover: 9.19

Size of processed image (pixels): 21658065
Total processing time: 410 seconds
Cloud cover quality estimate: Good
CASA result warnings: None

Imagery (c) Space Imaging LLC
CASA Benefits / Value

✓ Reduce labor and operating costs for cloud identification, and QA/QC
✓ Operationally identify "failed" acquisitions
✓ Automatically generate cloud and cloud shadow pixel-level masks for each acquisition
✓ Automatically update the cloud cover percentage metadata tag
✓ Provide customers with cloud and cloud shadow masks as an additional data layer
✓ More easily generate value-added products such as image mosaics / composites (e.g., Digital Globe's CitySphere™) through pixel-by-pixel replacement of cloud and/or cloud shadow areas
Future R&D

- Further improvements to the automated version
 - Accuracy
 - Speed
 - Introduction of new sensors and I/O options

- Under-shadow area and feature enhancement

- Improved, Automated Gap Filling and Image Mosaicing

- Automated detection of other features of interest
 - E.g., buildings, roads, streams, individual trees, auto-vehicles
 - Map updates
 - Change assessment
Acknowledgements

- **Funding and Technical Management**
 - NASA Small Business Innovative Research (SBIR) Program
 - Tom Stanley, NASA SSC

- **Data**
 - Scientific Data Purchase (SDP) Program at NASA SSC
 - Space Imaging LLC
 - The Global Land Cover Facility (GLCF) at UMD
For More Information

GDA Corp.
Innovation Park at Penn State University
200 Innovation Blvd.
Suite 234
State College, PA 16803
tel: 814-237-4060
fax: 814-237-4061
email: dmitry@gdacorp.com