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Introduction
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Overview
• LiDAR systems:

– Introduction
– Mathematical model
– Quality Assurance and Quality Control (QA/QC)
– Error budget

• Random errors
• Systematic errors

– System verification & diagnosis (QC)

• Concluding remarks 
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Three Measurement Systems

1. GNSS

2. IMU

3. Laser scanner emits laser 
beams with high 
frequency and collects the 
reflections

LiDAR Principles

INS

GNSS

GNSS

IMU
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LiDAR Equation & Coordinate Systems

• LiDAR equation is a vector summation procedure.
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ground coordinates of the origin of the IMU coordinate system

ground coordinates of the object point under consideration

offset between the laser unit and IMU coordinate systems (spatial bore-sighting)

rotation matrix relating the IMU and laser unit coordinate systems (angular bore-sighting)

rotation matrix relating the ground and IMU coordinate systems

rotation matrix relating the laser unit and laser beam coordinate systems
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LiDAR Equation

range between the laser beam firing point and its footprint)(tρ

• Note: There is no redundancy in the surface reconstruction process.
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Range Data (Shaded Relief)

Intensity Data

LiDAR Output
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Quality Assurance & Quality Control
• Quality assurance (before mission): 

– Management activities to ensure that a process, item, or 
service is of the quality needed by the user. 

– It deals with creating management controls that cover 
planning, implementation, and review of data collection 
activities.

– Key activity in the quality assurance is the calibration calibration 
procedureprocedure.

• Quality control (after mission):
– Provide routines and consistent checks to ensure data 

integrity, correctness, and completeness.
– Check whether the desired quality has been achieved.

• Error budget analysis is important for QA/QC.
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LiDAR Error Budget
• The quality of the derived point cloud from a LiDAR 

system depends on:
– Random errors in the system measurements.

• Position and orientation information from the GNSS/INS unit.
• Ranges between the laser beam firing point and its footprints.
• Mirror angles.

– Systematic errors in the system parameters:
• Biases in the spatial bore-sighting parameters (δ∆X, δ∆Y, δ∆Z).
• Biases in the angular bore-sighting parameters (δ∆ω, δ∆φ, δ∆κ).
• Biases in the measured ranges (δρ).
• Scale bias in the mirror angle (δS).

• We would like to investigate the impact of random and 
systematic errors on the quality of the derived LiDAR 
surface.
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• The effect of random errors can be analyzed using 
either one of the following approaches:
– Approach # I:

• Simulated surface & trajectory LiDAR measurements 
Add noise Reconstructed surface.

• Evaluate the differences between the reconstructed footprints 
and the simulated surface (i.e., ground truth).

– Approach # II:
• Law of error propagation to evaluate the accuracy of the 

derived point cloud using the accuracy of the LiDAR 
measurements.

Random Errors
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Random Errors: Orientation Noise

• Propagates with the flying height
• Depends on the look angle
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LiDAR Error Propagation Calculator

http://ilmbwww.gov.bc.ca/bmgs/pba/trim/specs
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13

System Model GPS (m)
Post-Processed

IMU (deg)
Post-Processed Scan Angle

(deg)
Laser Range

(cm)
Roll Pitch Heading

ALTM 2050 0.05 – 0.3 0.008 0.008 0.015 0.009 ~ 2

ALTM 3100 0.05 – 0.3 0.005 0.005 0.008 0.009 ~ 2

- System Manufacturer Specification (Optech: ALTM 2050 and ALTM 3100)

- Horizontal accuracy : 1/2000 x altitude
- Vertical accuracy : <15 cm at 1200 m

: <25 cm at 2000 m

- Accuracy of the system components

LiDAR Random Error Budget
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LiDAR Random Error Budget

Simulation 1Simulation 1

Specs.Specs.
- Horizontal: < 0.60 m
- Vertical: < 0.15 m

- Expected accuracy (assuming flat solid surface) of the ground 
coordinates as derived from the error propagation – ALTM 2050

Simulation 2Simulation 2

Specs.Specs.
- Horizontal: < 1 m
- Vertical: < 0.25 m
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Random Errors and Relative Accuracy

Random Noise added to the 
Orientation Measurements

Relative accuracy is affected

Random Noise added to the 
Position Measurements

Relative accuracy is not affected
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• We would like to show the effect of systematic errors/biases 
in the LiDAR parameters on the reconstructed object space.

• The effects will be derived through mathematical analysis of 
the LiDAR equation.

• The effects will be also analyzed through a simulation 
process:
– Simulated surface & trajectory LiDAR measurements Add 

biases Reconstructed surface.
– The effects will be shown through the differences between the 

reconstructed footprints and the simulated surface (i.e., ground
truth).

• These effects will be shown for linear LiDAR systems.

Systematic Errors
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• Effect is independent of 
the look angle

• Planimetric effect is dependent 
on the flying direction

• Vertical effect is independent of 
the flying direction

• Effect is independent of 
the flying height

Bore-sighting 
Offset Bias

Look AngleFlying DirectionFlying Height

Ground Truth

• DX, DY, and DZ for two strips 
flown in opposite directions

• Y-axis is the flight direction

Bore-Sighting Offset Bias (δ∆X, δ∆Y, δ∆Z)
Forward 

Strip

Backward 
Strip



18
JACIE, 2008

Bore-Sighting Pitch Bias (δ∆ω)

• Effect is independent of 
the look angle

• Planimetric effect along the 
flight direction is dependent on 
the flying direction

• Effect is dependent on 
the flying height

Bore-sighting 
Pitch Bias

Look AngleFlying DirectionFlying Height

The pitch bias only affects the planimetric component along the flight direction (Y-Axis in this example).

• DX, DY, and DZ for two strips 
flown in opposite directions

• Y-axis is the flight direction

Forward 
Strip

Backward 
Strip
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Bore-Sighting Roll Bias (δ∆φ)

• Planimetric effect across the 
flight direction is independent 
of the look angle

• Vertical effect is dependent on 
the look angle

• Planimetric effect across 
the flight direction and 
vertical effect are 
dependent on the flying 
direction

• Planimetric effect across the 
flight direction is dependent 
on the flying height

• Vertical effect is independent 
of the flying height

Bore-
sighting Roll 
Bias

Look AngleFlying DirectionFlying Height

The roll bias affects the planimetric component across the flight direction (X-Axis in this example) and the 
height component.

• DX, DY, and DZ for two strips 
flown in opposite directions

• Y-axis is the flight direction

Forward 
Strip

Backward 
Strip
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Bore-Sighting Heading Bias (δ∆κ)

• Planimetric effect along the 
flight direction is dependent on 
the look angle

• Planimetric effect along the 
flight direction is independent of 
the flying direction

• Effect is 
independent of the 
flying height

Bore-sighting 
Heading Bias

Look AngleFlying DirectionFlying Height

The heading bias only affects the planimetric component along the flight direction (Y-Axis in this example).

• DX, DY, and DZ for two strips 
flown in opposite directions

• Y-axis is the flight direction

Forward 
Strip

Backward 
Strip
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Range Bias (δρ)

• Planimetric effect across the 
flight direction and vertical 
effect are dependent on the 
look angle (DX more than DZ)

• Planimetric effect across the 
flight direction and vertical 
effect are independent of the 
flying direction

• Effect is dependent 
on the flying height

Range Bias

Look AngleFlying DirectionFlying Height

The range bias affects the planimetric component across the flight direction (X-Axis in this example) and the 
height component.

• DX, DY, and DZ for two strips 
flown in opposite directions

• Y-axis is the flight direction

Forward 
Strip

Backward 
Strip
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• Planimetric effect across the 
flight direction and vertical 
effect are dependent on the 
look angle.

• Planimetric effect across the 
flight direction and vertical 
effect are independent of the 
flying direction

• Effect is dependent 
on the flying height

Mirror Angle 
Scale

Look AngleFlying DirectionFlying Height

Mirror Angle Scale Bias (δS)

Forward 
StripBackward 

Strip

)1(*. Smeastrue δββ +=

• DX, DY, and DZ for two strips 
flown in opposite directions

• Y-axis is the flight direction

The mirror angle scale bias affects the planimetric component across the flight direction (X-Axis in this 
example) and the height component.
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• Strips flown in opposite directions
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• Using two strips flown in opposite directions (100% side lap)

• Strips flown in opposite directions with 100% side lap are good for 
highlighting:

• Bore-sighting roll bias (δ∆φ) from R2δ∆φ
• δ∆X from XT
• (2δ∆Y + 2 H δ∆ω) from YT

• Assuming δ∆Y  is very small, δ∆ω can be derived from YT

Bore-sighting, Mirror Angle Scale & Range Biases in Overlapping Strips
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• The previous models are derived using the 
following assumptions:
– Linear scanner,
– Vertical laser unit (z-axis coincides with the plumb 

line),
– The strips are flown in straight lines with constant 

attitude,
– The strips are parallel, 
– Relatively small bore-sighting biases, and
– Elevation variations are small when compared with the 

flying height. 

Bore-sighting, Mirror Angle Scale & Range Biases in Overlapping Strips
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QC of LiDAR Data

System Diagnosis
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• Quality control is a post-mission procedure to 
ensure/verify the quality of collected data.

• Quality control procedures can be divided into two 
main categories:
– External/absolute QC measures: the LiDAR point cloud 

is compared with an independently collected surface.
• Check point analysis.

– Internal/relative QC measures: the LiDAR point cloud 
from different flight lines is compared with each other 
to ensure data coherence, integrity, and correctness.  

LiDAR Quality Control
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Strip 2 Strip 3 Strip 4

IQC: LIDAR Quality Control

• IQC is used for:
– Checking for the presence of systematic biases. 

• In the absence of systematic biases, conjugate surface elements in 
overlapping strips should coincide with each other as well as 
possible.

– Checking the noise level in the point cloud.
• Using the a posteriori variance factor.
• The quality of fit between conjugate entities after removing existing 

biases.
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• Check for the presence of biases:
– In the absence of biases, conjugate surface elements in 

overlapping strips should coincide with each other as well 
as possible.

– Biases will cause shifts and rotation between overlapping 
strips flown in the same or opposite directions.

• It should be noted that random noise in the LiDAR data, 
regardless of its magnitude, will not cause systematic 
discrepancies between overlapping strips.

– Using procedures for discrepancy detection between 
conjugate strips, we can estimate the necessary shifts and 
rotation, which are needed for the best alignment of 
overlapping strips.

– Significant deviations from the optimum values (zero 
translations and rotations) indicate the presence of biases 
in the system parameters.

IQC: LIDAR Quality Control
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IQC: LIDAR Quality Control

Check for the presence of biases
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Check the noise level in the point cloud after bias removal

IQC: LIDAR Quality Control
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• Checking the noise level in the point cloud: 
– The quality of fit between conjugate entities after 

removing existing biases.
• Average normal distance between conjugate planar patches.
• Average normal distance between conjugate linear features.
• Average normal distance between conjugate point-patch pairs 

in the ICPatch.

IQC: LIDAR Quality Control
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• Using two strips flown in the same direction

D

ab

System Diagnosis using Overlapping Strips
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• D is the lateral distance between the strips
• When D is maximum, parallel strips are good for detecting:

– Mirror angle scale (δθ from R2δθ )
– Range bias (δρ from XT)
– Bore-sighting heading bias (δ∆κ from YT)
– Bore-sighting roll bias (δ∆φ from ZT)

• Question: How can we determine the shift and rotation parameters (XT, 
YT, ZT, 2δθ) from overlapping strips without having point-to-point 
correspondence?
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System Diagnosis using Overlapping Strips
• Strips flown in opposite directions
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• Using two strips flown in opposite directions (100% side lap)

• Confirm bore-sighting roll bias (δ∆φ from R2δ∆φ )
• Derive δ∆X from XT
• Derive (2δ∆Y - 2 z δ∆ω) from YT

• Assuming δ∆Y is very small, δ∆ω can be derived from YT
• δ∆Z cannot be recovered

• Question: How can we determine the shift and rotation parameters (XT, 
YT, ZT, 2δ∆φ) from overlapping strips without having point-to-point 
correspondence?
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System Diagnosis using Overlapping Strips
• Using four strips flown in opposite directions with 100% side lap at two 

different flying heights:
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• Confirm bore-sighting roll bias (δ∆φ from R2δ∆φ ) 
• Derive δ∆X from XT1 

and confirm it using XT2
.

• Derive (2δ∆Y - 2 H1 δ∆ω) from YT1
.

• Derive (2δ∆Y - 2 H2 δ∆ω) from YT2
.

• δ∆Z cannot be recovered

• Derive δ∆Y  and δ∆ω

• Question: How can we determine the shift and rotation parameters (XT, 
YT, ZT, 2δ∆φ) from overlapping strips without having point-to-point 
correspondence?
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• Conceptual basis: 
– Detect discrepancies between overlapping strips.
– Relate the detected discrepancies to systematic errors in 

the system parameters.
• For detecting existing discrepancies, we need to 

identify conjugate surface elements (primitives) in 
overlapping LiDAR strips.

• What are the most appropriate primitives?
– Points (not recommended).
– Areal features.
– Linear features.

System Diagnosis using Overlapping Strips
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Discrepancy Detection using Planar Patches
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• Extraction Procedure:

ROI* selection

Data extraction in 
overlapping Strips

Segmentation

Patch matching

Discrepancy Detection using Planar Patches

* Region of Interest
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Linear Feature Extraction

Discrepancy Detection using Linear Features
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• The previous procedures for detecting discrepancies 
between overlapping strips require preprocessing of the 
LiDAR point cloud:
– Interpolation, planar patch segmentation, plane fitting, and/or 

intersection.

• Another approach can be devised while using the original 
point cloud.
– One strip is represented by a set of irregularly distributed points 

(LiDAR point cloud).
– Second strip is represented by a TIN generated from the LiDAR 

point cloud. 
– Iterative Closest Patch (ICPatch).

Discrepancy Detection using Non-Conjugate Points
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• Starting from a given set of approximate parameters, we 
determine conjugate point-patch pairs in overlapping 
strips.

• Conjugate primitives are used to estimate an updated set 
of parameters, which are then used to determine new 
correspondences.

• The approach is repeated until convergence.

Discrepancy Detection using Non-Conjugate Points
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Conditions:
• Closest patch
• Point located within the patch

Discrepancy Detection using Non-Conjugate Points
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• The proposed strategies for IQC can be used for 
EQC as well.
– Instead of evaluating the consistency of two over 

lapping strips, we can evaluate the consistency between 
the LiDAR point cloud and an independently acquired 
control surface.

– The control surface can be derived from 
photogrammetric reconstruction or RTK GPS survey. 

IQC & EQC: LIDAR Quality Control
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Experimental Results

University of Calgary Data
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Study AreaStudy Area

• Surveyed area – UofC Campus

Sensor Model Optech 3100

Flying Height ~1000 & 1400m

Ground Point Spacing ~0.75m

2 Surveying Days 
– 1st Day: 088 6 strips @1000m
– 2nd Day: 130 4 strips @1400m

46
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Strip 08806

47
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Strips 08803 & 08804Strips 08803 & 08804
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Strips 08804 & 08805Strips 08804 & 08805
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Strips 08805 & 08806Strips 08805 & 08806
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Strips 08806 & 08807Strips 08806 & 08807
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Strips 08807 & 08808Strips 08807 & 08808
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Strips 08803 & 08805Strips 08803 & 08805
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Strips 08805 & 08807Strips 08805 & 08807
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System Diagnosis
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System Diagnosis 3
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System Diagnosis
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Strips 13027 & 13030Strips 13027 & 13030

13027
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13029

13030

Strips 13029 & 13030Strips 13029 & 13030
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13029

13028

Strips 13029 & 13028Strips 13029 & 13028
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System Diagnosis
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System Diagnosis
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• The most obvious discrepancy is the one observed along the flight directions.

• There are heading and pitch bore-sighting biases in the system calibration parameters.

• There is a smaller bias in the roll bore-sighting parameters.

• The system parameters changed between the two flights (there was an aircraft change).
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Concluding Remarks
• QA and QC procedures are essential for any spatial data 

acquisition system.
• Approximate calibration of a LiDAR system is possible by 

detecting the nature of discrepancies between overlapping 
strips.

• Rigorous calibration of a LiDAR system is only possible 
for a transparent system.
– Availability of the raw data.

• Quality control of LiDAR data can be conducted by the 
end user.
– LiDAR derived data is not based on adjustment procedure.
– Quality control measures, which are typically used in 

photogrammetry, are not applicable.
– Alternative procedures are needed to check for systematic biases

and evaluate the noise level in the point cloud.
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• We developed procedures for detecting discrepancies between 
overlapping strips while having non-conjugate points.
– Linear and areal features.
– Iterative Closest Patch (ICPatch).

• We introduced the appropriate mathematical model relating 
conjugate elements in overlapping strips.

• We need to verify the detected biases by recalculating the 
point cloud (only possible if we have access to the processing 
SW).

• Pursue rigorous calibration of LiDAR systems (only possible 
if the raw data is available).

• Strip adjustment: is it a good idea?
• Promote commonly accepted standards for QA/QC of LiDAR 

systems and derived data.

Concluding Remarks


