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Introduction
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s [alk overview

IScuss Sl-traceable approach that permit cross-
alibration

Much of what is shown is not new/original but it is the
end concept that has a twist on past efforts

Review typical on-orbit cross-calibration methods
® \With overlapping views

® \Without overlapping views
Past results

® Coincident views of same site

® Reflectance-based method

Method without overlapping views without on-site
measurements

Summary and recommendations



-traceable approach to cross-calibration using
2|l understood sources

Ground-based
Measurements Predicted

At-sensor
radiance

Selected Test

Satellite-based

Measurements \
Airborne-based /

Measurements

Radiance is for arbitrary
1) Time

eed to move away Model-based 2) View angle

rom solely using “Measurements” 3) Sun angle

empirically-based SI-Traceable with

approaches documented error budget
and uncertainty



e ONn-orbit cross calibration

ave been great advancements in
)proaches for cross-calibration
Desert site work

® 1980s using ER-2 flights
over White Sands and
Sonoran desert

® 1990s with the North
African deserts

Arctic sites with SNO
unar views
Data product approaches

n-situ ground measurement
ethods
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ODIS and ASTER
er same platform,
ame view

dincident views
Upper graph shows
ASTER Band 1
calibration coefficient
derived from Railroad
Valley data

Lower graph shows
results from multiple
sites

Lower graph also
shows In-situ results
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SN MODIS vs. ASTER

ensors on same platform offer essentially identical
ews at identical times

Corrections needed for
differences in spectral
bandpass

Registration effects and
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MODIS Image Radiance
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surface inhomogeneity 50
cause added uncertainties 0
Uncertainties increase as 0 50 100 150 200
time between sensors ASTER Image Radiance

Increases

Knowledge of surface and
atmosphere reduces
uncertainties



alibration to Sl-
aceable,
ound-based
easurments

Show here the
plas relative to an
Independent, SI
traceable
approach

Calibration relative
to the In-situ data

Draw back is that it
requires sensor at
Site at overpass

15 —
§ 10 —
2 5 | |
%) 0 — [ =
o 5
c ASTER comparison
®-10 -
§ -15 -
-20 | | | | | | | |
Bl B2 B3 B4 B5 B6 B7 B8
o 12
& @ ASTERA MODISH ETM+® MISR I
S 8
o
! 7
g R
> 4 i ¢
o)) ®
©
S 6 {
>
< -12 =2
0.4 0.5 0.6 0.7 0.8 0.9

Wavelength (micrometers)



npS High resolution sensors

ethod applied to results shown at past JACIE
eetings for QuickBird, Ikonos, and Orbview

lkonos and
Orbview
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agreement is

_ ® lkonos ® Orhview ¢ QuickBird
expected since the
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sensor calibration

was altered to
match reflectance-

based results
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match ETM+ - 1 5 3 4
based on
reflectance-based
results



w2 \What causes the differences?

ell known that multidimensionality of at-sensor
\.diance can mask calibration biases
View/solar geometry differences

® Surface reflectance changes

® Atmospheric effects 5

® Lunar phase effects N ! r . F
Temporal differences .
= wanoos & e

® Solar angle

® Atmospheric changes

® Lunar phase
Registration effects
Spectral difference

All successful methods attempt to account for these
effects or minimize the sensitivity

Avg. % Difference

645 858



ext step

Xt logical step Is to combine philosophy of in-situ
asurements with invariant site work

-Situ measurements become basis for
physically-based model

Atmospheric
Surface
lows for an Sl-traceable result

equires innovative measurement
oproaches




Atm okspheri‘c model
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Radiative ‘
Transfer Code

ey is that measurements to create the models need not
)e In-situ

>atellite and airborne-based measurements are a good
tarting point




Results have been shown at the last
two JACIE conferences using the
Dome C site (Mackin and others)

® Corrections for BRDF

® Corrections for atmospheric
effects

Work by Vermote with MODIS and
AVHRR

® Surface BRDF model corrected
by Terra MODIS

® Includes atmospheric corrections
based on climatological values

University of Arizona couples
automated data with surface models

Observed reflectance /Predicted Reflectance

Model-based measurements

Band 2
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I MCST ratio preflight to solar diffuser calibration
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-traceable approach to cross-calibration that
)es not require coincident views

Ground-based
Measurements Predicted

At-sensor
radiance
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Radiance is for arbitrary
1) Time

Model-based 2) View angle
“Measurements” 3) Sun angle

Selected Test

Satellite-based

Measurements \
Airborne-based /

Measurements

SlI-Traceable with
documented error budget
and uncertainty



¥ Summary

semble of current sensors and expertise in
alibration/validation is unprecedented

Has led to dramatic improvements in cross-calibration
methods

® Both precision and accuracy
® Several independent methods

Recognition of importance of Sl-traceable methods with
documented error budgets

Multi-national data sets and collaborations has been key
to this as well

® CEOS
® GEOSS

15



gy Summary

equires a switch from a sensor-centric approach
) a source-centric mentality of cross-calibration
One-by-one empirical comparisons between sensors
have been very successful but have limits

Combination of physically-based modeling and empirical
data will not be trivial

Predicted
At-sensor
radiance

' ;

Satellite-based

Measurements \
Airborne-based /

Measurements

Measurements
Inclusion of highly-accurate Selected Test
Result will be improved relative
1) Time
SI-Traceable with

® First results may only have 50% accuracy
® Results will improve with time Ground-based

spaceborne sensors would {

greatly improve results \

calibration precision and Radiance is for ambitary
. . Model-based 2) View angle

absolute calibration that has the ‘Messurements' ) Sun ange

capability of matching current methods documented eorbudoe



