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Introduction

 Invariant sites

 In-situ measurements

 Lunar

 With and without overlap

 All approaches basically rely on 

understanding the output of a 

source

As evident from this conference, 
there exist numerous methods 
for on-orbit characterization
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Talk overview

 Much of what is shown is not new/original but it is the 

end concept that has a twist on past efforts

 Review typical on-orbit cross-calibration methods

 With overlapping views

 Without overlapping views

 Past results

 Coincident views of same site

 Reflectance-based method

 Method without overlapping views without on-site 

measurements

 Summary and recommendations

Discuss SI-traceable approach that permit cross-
calibration



Result

SI-traceable approach to cross-calibration using 
well understood sources
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approaches



On-orbit cross calibration

 Desert site work
 1980s using ER-2 flights 

over White Sands and 
Sonoran desert

 1990s with the North 
African deserts

 Arctic sites with SNO

 Lunar views

 Data product approaches

 In-situ ground measurement 
methods

Have been great advancements in 
approaches for cross-calibration



ASTER Band 1
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 Upper graph shows 

ASTER Band 1 

calibration coefficient 

derived from Railroad 

Valley data

 Lower graph shows 

results from multiple 

sites

 Lower graph also 

shows in-situ results

MODIS and ASTER 
offer same platform, 
same view 
coincident views
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MODIS vs. ASTER

 Corrections needed for 

differences in spectral 

bandpass

 Registration effects and 

surface inhomogeneity

cause added uncertainties

 Uncertainties increase as 

time between sensors 

increases

 Knowledge of surface and 

atmosphere reduces 

uncertainties
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Sensors on same platform offer essentially identical 
views at identical times



Calibration to in-situ

 Show here the 

bias relative to an 

independent, SI 

traceable 

approach

 Calibration relative 

to the in-situ data

 Draw back is that it 

requires sensor at 

site at overpass
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High resolution sensors

 Ikonos and 
Orbview 
agreement is 
expected since the 
sensor calibration 
was altered to 
match reflectance-
based results

 Quickbird results 
were modified to 
match ETM+ 
based on 
reflectance-based 
results

Method applied to results shown at past JACIE 
meetings for QuickBird, Ikonos, and Orbview
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What causes the differences?

 View/solar geometry differences

 Surface reflectance changes

 Atmospheric effects

 Lunar phase effects

 Temporal  differences

 Solar angle

 Atmospheric changes

 Lunar phase

 Registration effects

 Spectral difference

 All successful methods attempt to account for these 

effects or minimize the sensitivity

Well known that multidimensionality of at-sensor 
radiance can mask calibration biases
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Next step 

 In-situ measurements become basis for 

a physically-based model

 Atmospheric

 Surface

 Allows for an SI-traceable result

 Requires innovative measurement 

approaches

Next logical step is to combine philosophy of in-situ 
measurements with invariant site work



Basic method

 Key is that measurements to create the models need not 

be in-situ

 Satellite and airborne-based measurements are a good 

starting point



Model-based measurements

 Results have been shown at the last 

two JACIE conferences using the 

Dome C site (Mackin and others)

 Corrections for BRDF

 Corrections for atmospheric 

effects

 Work by Vermote with MODIS and 

AVHRR 

 Surface BRDF model corrected 

by Terra MODIS

 Includes atmospheric corrections 

based on climatological values

 University of Arizona couples 

automated data with surface models
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Result

SI-traceable approach to cross-calibration that 
does not require coincident views
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Summary

 Has led to dramatic improvements in cross-calibration 

methods

 Both precision and accuracy

 Several independent methods

 Recognition of importance of SI-traceable methods with 

documented error budgets

 Multi-national data sets and collaborations has been key 

to this as well

 CEOS

 GEOSS

Ensemble of current sensors and expertise in 
calibration/validation is unprecedented 



Summary

 One-by-one empirical comparisons between sensors 

have been very successful but have limits

 Combination of physically-based modeling and empirical 

data will not be trivial

 First results may only have 50% accuracy

 Results will improve with time

 Inclusion of highly-accurate

spaceborne sensors would 

greatly improve results 

 Result will be improved relative

calibration precision and

absolute calibration that  has the

capability of matching current methods

Requires a switch from a sensor-centric approach 
to a source-centric mentality of cross-calibration
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