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Washington, D.C.Washington, D.C.

Space Imaging’s Ikonos imagery



Textural Feature Extraction 
using Discrete Wavelet Transform
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Class Separability with Textural Features IncludedClass Separability with Textural Features Included



North Korea – Malaria Risk MapNorth Korea – Malaria Risk Map

This map is only intended as a guide since mosquitoes do not respect boundaries and the risk 
areas shown may not be exact. Substantial malaria risk is shaded in dark red - becoming a 
lighter red where the risk is minimal. 
(http://www.fitfortravel.scot.nhs.uk/Country/Democratic_Peoples_Republic_Korea_Malaria_Map.
htm)
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Kyunggi, South KoreaKyunggi, South Korea

Space Imaging’s Ikonos imagery



Ground TruthGround Truth Kr34_pseudogt.jpg
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Space Imaging’s Ikonos imagery



From Cook et al. “Ikonos Technical Performance Assessment” 2001 SPIE Proceedings, Algorithms for 
Multispectral, Hyperspectral, ..., p.94.



Overall Classification Accuracy using 
Pan-sharpened Data (1m Resolution)
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Detection of DitchesDetection of Ditches

Kr5_rgb.jpg

Space Imaging’s Ikonos imagery



Detection of DitchesDetection of Ditches

Space Imaging’s Ikonos imagery



NDVI from AVHRR MeasurementsNDVI from AVHRR Measurements

NDVI = Normalized Difference Vegetation Index

AVHRR = Advanced Very High Resolution Radiometer

Compiled by NOAA/NESDIS
for Feb. 13, 2001

� NDVI = (near infrared – red) 
÷ (near infrared + red)

� Can be used to infer ground cover
and rainfall.

� Can be derived from other sensors
as well.



Post-Processing with Class Frequency FiltersPost-Processing with Class Frequency Filters

Space Imaging’s Ikonos imagery



ConclusionsConclusions

• Pan-sharpened Ikonos data can be used to detect irrigation and 
drainage ditches, which are the important larval habitats for 
Anopheles sinensis that carries Plasmodium vivax.

• Pan-sharpening enhances visual cue, but it may also make 
clusters in feature space more diffused.  This may result in lower 
classification accuracy in per-pixel classifications.

• Per pixel classification alone does not fully utilize the potential of 
pan-sharpened data.  With spatial characteristics included, 
classification accuracy may surpass those for unsharpened 
data.
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