Improved Radiometric Calibration of the Disaster Monitoring Constellation using a “Gold” standard satellite - preliminary results

Steve Mackin
Paul Stephens
Dave Hodgson
Presentation

- DMC Constellation overview
- Problems of vicarious calibration
- New Approach – Cross calibration
 - Vicarious calibration
 - Transfer calibration
 - Cross-calibration
- Summary and conclusions
DMC Constellation

- Four satellites in Constellation
- 32m GSD, 640km wide swath
- Green, Red and NIR bands
Problems of Vicarious Calibration

• Logistics and costs
 – Many satellites each requiring several acquisitions
 • Organisational issues (timing, availability)
 • Costs (ground teams and processing)
 – Growing number of satellites each year

• Technically
 – Variable number of acquisitions gives variable quality
 – Larger than desired relative (satellite to satellite) calibration variability
 • Affects customer applications (precision farming using the whole constellation)
New Approach

• Three elements
 – Absolute calibration
 • Uses a single satellite “Gold” standard
 • More acquisitions (more confidence)
 • Lower costs as single satellite
 – Transfer calibration
 • Uses Dome-C in Antarctica to transfer from a few detectors to whole array
 – Cross-calibration
 • Intersections over Dome-C (half an image overlap – 320km) time separation of 30 minutes to one hour with stable atmosphere
Absolute Calibration - Approach

- Railroad Valley using the reflectance method (6 – 10 acquisitions)
- Nine columns (pixels) calibrated
Absolute Calibration - Approach

- Analysed image variation over ASTER test site and a much larger area. The system noise seems to be the larger source of variability (after comparing several data sets).
- Used 9 x 10 pixel box (instead of 9 x 2 for ASTER site). This reduced the uncertainty due to system noise.

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>193</td>
<td>187</td>
<td>195</td>
<td>192</td>
<td>196</td>
<td>188</td>
<td>195</td>
<td>190</td>
<td>200</td>
<td>193</td>
</tr>
<tr>
<td>195</td>
<td>189</td>
<td>201</td>
<td>190</td>
<td>196</td>
<td>191</td>
<td>198</td>
<td>190</td>
<td>199</td>
<td>194</td>
</tr>
<tr>
<td>192</td>
<td>189</td>
<td>196</td>
<td>190</td>
<td>200</td>
<td>187</td>
<td>199</td>
<td>190</td>
<td>195</td>
<td>193</td>
</tr>
<tr>
<td>195</td>
<td>190</td>
<td>197</td>
<td>190</td>
<td>198</td>
<td>191</td>
<td>199</td>
<td>194</td>
<td>197</td>
<td>192</td>
</tr>
<tr>
<td>190</td>
<td>189</td>
<td>199</td>
<td>190</td>
<td>194</td>
<td>192</td>
<td>198</td>
<td>196</td>
<td>199</td>
<td>194</td>
</tr>
<tr>
<td>191</td>
<td>187</td>
<td>199</td>
<td>191</td>
<td>197</td>
<td>191</td>
<td>198</td>
<td>192</td>
<td>198</td>
<td>192</td>
</tr>
<tr>
<td>188</td>
<td>183</td>
<td>198</td>
<td>191</td>
<td>196</td>
<td>192</td>
<td>194</td>
<td>192</td>
<td>198</td>
<td>192</td>
</tr>
<tr>
<td>196</td>
<td>191</td>
<td>198</td>
<td>190</td>
<td>195</td>
<td>191</td>
<td>197</td>
<td>189</td>
<td>197</td>
<td>194</td>
</tr>
<tr>
<td>196</td>
<td>195</td>
<td>200</td>
<td>192</td>
<td>196</td>
<td>197</td>
<td>198</td>
<td>193</td>
<td>197</td>
<td>191</td>
</tr>
<tr>
<td>197</td>
<td>195</td>
<td>198</td>
<td>194</td>
<td>197</td>
<td>192</td>
<td>198</td>
<td>193</td>
<td>198</td>
<td>193</td>
</tr>
<tr>
<td>198</td>
<td>193</td>
<td>198</td>
<td>190</td>
<td>201</td>
<td>193</td>
<td>196</td>
<td>193</td>
<td>198</td>
<td>193</td>
</tr>
</tbody>
</table>
Absolute Calibration – Uncertainties

• Uncertainties as defined in the literature (2.7% r.m.s) for the absolute from UofA.

• Additional uncertainty from system noise both over RRV and over Dome-C
 – When the RRV derived coefficients for a single absolute calibration are applied to the same white image, there is variability across the nine pixels used
 • Green : 0.31%, Red 0.37%, NIR, 0.4%
 – This is combined in the transfer uncertainty (in next section)
Transfer Calibration

- Transfer uses stable site in Antarctica at Dome-C
 - For each absolute acquisition all nine pixels used to generate nine radiances
 - Use mean value of nine pixels
 - Repeat for other absolute acquisitions
 - Get range of radiance values (one for each absolute image), since single white image used for transfer this is a measure of uncertainty

Dome-C base, note the surface Disturbance. Image from Nigeriasat-1
Transfer Calibration - Uncertainties

• The uncertainties are related to the variation in the mean radiance using a “standard” white image. With no uncertainty the mean radiance derived from each absolute image would be the same.

• Combines uncertainties from all sources (system noise, surface variability).
 – Green : 2.419%, Red : 2.87%, NIR : 3.37%

• This gives final absolute calibration coefficients when combined with the UofA uncertainty
 – Green : 3.625%, Red : 3.94%, NIR : 4.318%
Cross-Calibration

• Uses Dome-C site. Images have between one half and full overlap.
• Time separation of 30 minutes to one hour, yawed across principal plane.
• Preparation Steps include
 – Identification of image pairs (UK-DMC-1 and Nigeriasat-1 had 19 image pairs)
 – Cloud screening to select best for final cross calibration
 – Correction for solar zenith differences
 – Variability determination by ratioing values using new Nigeriasat-1 calibration and old UK-DMC-1 calibration.
Correction made to final calibration radiance based on where the image used lies in comparison to all the other images used in the process.
Cross-Calibration

- Cross-calibration steps include,
 - Selection of best cloud free pair
 - Correction for solar zenith differences
 - Correction for variability, if the pair is at the edge of the distribution it is corrected to the mean for the 19 image pairs
 - Calculation of new TOA radiances for UK-DMC-1 based on TOA radiances from Nigeriasat-1
 - Recalculation of calibration gain values
Cross-Calibration

• Uncertainties
 – This is tested by applying the new calibration to the UK-DMC-1 satellite and comparing the differences with Nigeriasat-1 satellite using the 19 image pairs.
 – Variability is a measure of the uncertainty
 – Green : 0.46%, Red : 0.47%, NIR : 0.65%
 – Combining these uncertainties with those from the absolute calibration of Nigeriasat-1 gives absolute uncertainties for UK-DMC-1 of
 – Green : 3.65%, Red : 3.97%, NIR : 4.36%
Calibration – Summary and Conclusions

- The use of a “Gold” standard satellite reduces cost and management for constellation use.
- Provided absolute values with better than 5% uncertainty.
- Cross-calibration was very effective with inter-satellite variability less than 1% for all spectral bands.
- Absolute uncertainty for all constellation members is less than 5%.
Are we right?

- CEOS WGCV Intercomparison has just finished over the Dome-C site
 - Sensors from all the major agencies
 - SPOT
 - Landsat
 - DMC
 - etc…
 - Same target near Dome-C
 - Data collected in December 2008 and January 2009

- So watch this space…
Thank You!

- www.dmcii.com
- www.sstl.co.uk