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Background

• International and commercial access to space 

is experiencing unprecedented growth

– By the year 2011 more than 50 imaging satellites 

with Landsat or better spatial resolution will be 

operational worldwide

• Small satellite constellations enable cost-

effective high spatial resolution high revisit 

solutions

• Next generation uncooled thermal imaging 

system solutions are now possible

– Thermal Infrared (TIR) 8-12 µm wavelength region

– Enables new applications
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Traditional Terrestrial TIR Architectures

• Typically cross-track scanning systems

• Small number of HgCdTe detectors
– Actively or passively cooled (~80 K) 

– Achieve 0.2-0.3 K sensitivity or better

• Typically large GSD
– Landsat  & ASTER are the highest resolution with 

60m and 90m GSD 

• Typically multispectral with exception of 
ETM+

• Complex and expensive
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Traditional Terrestrial TIR Systems

• L7/ETM+ (Cross-track scanner)

– Single band (10.4-12.5 µm) HgCdTe

– 60m GSD / 0.3 MTF Nyquist / 0.3K NEDT / 8 of 9 bits quantization

• Terra/ASTER (Cross-track scanner)

– Five TIR bands (8.125-11.65 µm) HgCdTe

– 90m GSD / 0.35 MTF Nyquist / 0.2K NEDT / 12 bits quantization

• AVHRR (Cross-track scanner)

– Two TIR bands (10.3-12.5 µm) HgCdTe

– 1100m GSD / 0.3 MTF Nyquist / 0.12K NEDT / 10 bits quantization

• Terra/MODIS (Cross-track scanner)

– 10 TIR bands (6.535-14.385 µm) HgCdTe

– 1000m GSD / 0.35 MTF Nyquist / 0.25K NEDT / 12 bits quantization

• Multispectral Thermal Imager (MTI) (Pushbroom)

– Three TIR bands (8.0-10.7 µm) HgCdTe

– 20m GSD / 0.025-0.045K NEDT / 12 bits quantization

• ERS-2/ATSR-2 (Conical scanner)

– Two TIR bands (10.6-12.3 µm) HgCdTe

– 1100m GSD / 0.02K NEDT / 11-12 bits quantization
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Selected TIR Application General 

Requirements Survey

Application NEDT

(K)

Tmin

(K)

Tmax

(K)

Accuracy

(K)

Revisit 

Time 

(Days)

GSD

(m)

Land Cover / Land Use 0.3-0.5 265 340 1 16 60-90

Geological Mapping 0.3 275 375 2 16 15

Urban Land Use 0.5 273 320 1 16 ~100

Monitoring Surface Energy and Water 

Fluxes 
~0.2 273 310 0.5 1-16 2-120

Cloud Science  / Climate Modeling 0.5 198 310 2 1-16 60-500

Urban Heat Islands 0.3 275 325 2 7 5-30

Agriculture Studies/Irrigation Mngt 0.1 273 313 0.5 1-7 20-120

Sea Surface Temp 0.1 273 320 0.1 1 300-1000

Volcano Monitoring 1 275 1500 2 1 15

Material Transport in Aquatic Systems ~0.3 273 305 0.2- 1 0.1-1 60-100

Coastal Monitoring 0.1 273 320 0.1 .5 ~100

Fire Monitoring 1 400 1000 2 .1 100-1000

Many TIR applications require spatial resolutions < 100 m 

and near daily revisits and are not met with today’s 

thermal systems. 



Common Land Imagers

Satellite/ Imager Country

GSD

(meters)

Swath

(km)

Repeat 

Frequency

# 

Bands Thermal

Landsat

Landsat 7
USA

30, 60 

(120)
180 16 days 8 60 m

Aqua/Terra

MODIS
USA

250, 500, 

1km
2330 1 – 2 days 36 100 m

UK-DMC

DMC
UK 32 600

~1 day  

(constellation)
3 N/A

RapidEye Germany 6.5 78
1 day

(constellation)
5 N/A

IRS-P6

AWifs
India 56 740 5 days 4 N/A

CBERS 1-2

CCD/IRMSS/WFI

China

Brazil

20, 80, 

160,260
113,120,890 26 days 10

160 m 

(IRMSS)

SPOT 5

HRG/HRS/VEG-2
France 5, 10, 20

60 x 120 

(Twin mode)
2 -3 days 8 N/a

IKONOS USA 0.82, 4 11.3
~3 days w/

pointing
5 N/A

QuickBird2 USA
0.61, 

2.44
16.5 Yes 5 N/A

No systems today provide thermal data at 

desired spatial resolution and repeat time 



Next Generation 

Concepts/Architectures to 

meet TIR Applications



Potential Next Generation Thermal 

System Baseline

• Constellation approach

• Single TIR band or split window

• Pushbroom Focal Plane Array (FPA) 

• Uncooled microbolometer technology

– Based on 40  mK Noise Equivalent Delta 

Temperature (NEDT) at 30-60 Hz frame rate, f/1 

optics, 8-14 µm bandpass, 8 ms thermal time 

constant

• Time Delay Integration (TDI)

– Application dependent
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Unique Role for Small Satellite 

Constellations
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Benefits of LEO Small Satellite 

Constellations

• Enhance performance

– Global monitoring

– Increased coverage

– Increased revisit time

• Increased failure tolerance

• Amortization of non-

recurring cost

• Recurring cost reduction

• Launch cost reduction
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Great potential to fill critical science data gaps that result from the high 

cost and long development cycles associated with traditional class 

science missions



Constellations Improve Coverage & 
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Potential Next Generation Thermal 

System - Case I
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SPOT
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• Logical extension of many reflective imaging systems

• Possible next generation constellation 
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Potential Next Generation Thermal 

System - Case II
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6A

• Logical extension of many reflective imaging systems

• Possible next generation constellation 

• Split window gives additional spectral content to improve 

atmospheric correction

Split Window

6B 11.5-12.5

10.4-11.3
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Typical Pushbroom FPA Configuration

Double Bank of Uncooled Microbolometer Detector Arrays

Spacecraft Direction

320x240 / 640x480 / 1024x1024 detector 

FPA  with striped interference filters for 

bandpass selection or filtered line arrays

TDI of 64 or more in principle possible
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Pushbroom Thermal Architecture 

Advantages

• Increased integration time increases Signal 
to Noise Ratio (SNR) 
– SNR ~ (number of cross track detectors)0.5

– SNR ~ (Time Delay Integration)0.5

– Enables 

• Smaller GSD systems for fixed detector 
sensitivity 

• Uncooled detectors 
– Large cryogenic arrays add significant complexity but 

have phenomenal sensitivity (DoE MTI)
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Notional Comparison of Different MS 

Thermal Architectures
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Infrared Detector Types

• Cooled Detectors 
– Well established

– Photovoltaic or photo-conducting mechanisms
• InSb, HgCdTe and GaAs quantum well devices

– High framing rates and low noise 

• Uncooled Detectors
– Rely on a thermal response

• Bolometric or  pyroelectric

– Silicon microbolometers are the most mature space 
based technology

– Have slow framing rates and are relatively 
insensitive

– Lighter and smaller system packaging possible
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Uncooled Silicon Microbolometer FPA 

Characteristics

Typical Focal Plane Sizes
320x240 pixels( ~25-50 µm pitch)

640x480 pixels (~25 µm pitch)

1024x1024 pixels (~19 µm pitch)

1x512 pixels (~40 µm pitch)

Frame Rates
30 Hz or 60 Hz standard but 100 Hz 

systems have been demonstrated

Thermal Time Constants ~4-18 ms

NEDT (conservative value)
40 mK or better for 60 Hz, f/1 optics and 8 

ms time constant (300K Background)

Absorption coated silicon 

nitride isolated bridge with 

broadband response 

(8-14 µm) 

electrode

reflector

IR absorbing material

gold contact
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Satellite Launch Mission Altitude FPA

GSD

Swath NEDT

Bands

ISIR

(sensor)

August1997

(STS-85)

Tech demo 250 km 327 x 240

240 m

85 km .01-.06K @ 300K

4 bands: 8.6, 10.8, 

11.8, 7-13 µm

CALIPSO April 2006 Airborne particles, 

cirrus emissivity and 

particle size

705 km N/A

1000 m

64 km .3k @ 210K

3 bands: 8.7, 10.5, 

12 µm

THEMIS April 2001

(Mars 2001 

Orbiter)

Surface mineralogy 

Mars physical 

properties

400 km 320 x 240

100 m

32 km .5K @ 245K

1K @ 180K

1 band: 6.8-14.9 µm

Flying 

Laptop

Late 2010 Tech demo <1000 km 320 x 240

50 m

32 km .085K @ 300K

8-12 µm

EmberSat Forest fire detection 

and monitoring

250 km 320 x 240

250 m

85 km .01-.06K @ 300K

2 bands: 3.7, 11 µm

Aquarius May 2010 Global sea surface 

salinity

657 km 512 x 2 

(pushbroom)

351 m

182 km .08K @ 300K

2 bands: 3.4-4.2, 

10.4-11.3 µm

Sample Microbolometers Flown in 

Space
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TIR Spatial Resolution Drivers

• Frame Rate and Ground Velocity
– GSD ~ Ground Velocity / Frame Rate

• Altitude and Telescope Diameter (Dtelescope)
– Ground Spot Size (GSS) for a diffraction limited 

system is controlled by the Airy diffraction pattern

GSS =  2.44 λ*(altitude / Dtelescope)

• Thermal Time Constant (tau)
– Uncooled detectors only

Thermal time constant smear (similar to electronic 
MTF component in cross track scanners)



TIR System Trades



23

20 40 60 80 100 120
0

50

100

150

200

250

300

Frame Rate (Hz)

G
S

D
 (

m
)

6.8 km/sec
3.4 km/sec
1.7 km/sec
0.82 km/sec

Frame Rate Trades for Low Earth Orbit

Framing Rate 

(Hz) Standard Backscan/2 Backscan/4 Backscan/8

30 227 113 57 28

60 113 57 28 14

100 68 34 17 9

120 57 28 14 7

GSD (Meters)

• ALI-like architecture limited 

to 113 m for 60 Hz and 68 

m for 100 Hz readout rates

• Back scanning similar to 

Ikonos and Quickbird 

effectively reduces the 

ground velocity and 

enables smaller GSDs with 

standard frame rates  

Microbolometer 

Standard  Frame 

Rates

Ground Velocity at 700 km altitude
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Diffraction limited resolution (Rayleigh criteria)

Ground Spot Size (GSS)= 2.44 λ*(altitude / Dtelescope)

Telescope Diameter Trades

• GSS/GSD ~ 1-2 (most systems)

• Wide FOV f/1 refractive 

telescopes practical for 

telescopes ~<20 cm or 50-100m 

GSD systems at 700 km altitude 

• Smaller GSD systems will likely 

need slower reflective system to 

achieve reasonable FOV 

• Orbit altitude of 450 km allows 

approximately 36% smaller 

telescope than a 700 km altitude
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Reflective 
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NEDT Scaling

• Increasing the time constant improves NEDT 

sensitivity but generally impacts other system 

parameters (e.g. PSF)

• NEDT scales with:

– Power on detector 

• Power scales as (f-number)-2

– Spectral bandwidth (approx.)

– Atmospheric transmission loss 

– (TDI)-0.5
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Example NEDT Scaling (L7 10.4-12.5 µµµµm)

Baseline NEDT of 40 mK at f/1 optics

f/3 optics will produce NEDT < 0.2 K with large TDI
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NEDT Scaling Split Window bandpass

Baseline NEDT of 0.04 K at F/1 

F/2 optics will produce NEDT < 0.2 K with large TDI
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Application Standards

• Stressing remote sensing problem for a 

specific application

– Well defined characteristics

– Allows for rapid, objective evaluations

• Enables application requirements to be 

developed through parametric studies

– Helps define sensing system characteristics 
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Irrigation Management

• Irrigation currently represents two-thirds of fresh water 

use worldwide.

• Wide-area evapotranspiration estimates for water 

management decisions depend on accurate 

temperature retrieval from remotely sensed data.

• Center-pivot irrigation is common in parts of the world 

where surface water resources and rainfall are scarce. 

• Reasonable confidence in results is attained if the 
temperature errors of several pixel averages are 
<0.5 K.  

• The accuracy of the temperature retrieved from remote 
sensing data is fundamentally limited by
– Finite spatial resolution and noise of the imaging system 

– Physical size of the area of interest (AOI)

– Temp change between the AOI and adjacent regions



Simulated Center Pivot Irrigation Simulation 

• Typical center pivot 

irrigation diameters 

400-800 m

• Stressing problem

– Crop temperature 300 K

– Soil temperature 320 K 

– Goal temperature 

accuracy ~ 0.5 K taking 

into account NEDT and 

finite PSF

300 K Field

400-800 m

320 K Background



System Level MTF Components
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Total System Level MTF
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Simulated Center Pivot Irrigation 

Simulation  Results
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Summary

• Small satellite constellations with 15-20 cm 
or smaller telescope diameters, refractive f/1 
wide field of view optics could enable <100 m 
GSD class systems with near daily revisit 
times

• New thermal applications requiring daily 
revisits and moderate spatial resolution could 
be performed
– Irrigation management

– Fire detection and management

– Volcano monitoring

• Application standards need to be identified to 
size specific systems 
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Summary, continued

• TDI significantly improves NEDT (TDIs of 40 
have been demonstrated)

• Mosaic FPAs required for large swaths

• Further FPA developments at 100 Hz or 
greater frame rates would have significant 
impact

• Decreased time constants with small 
improvements in NEDT would help provide 
design margin
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Other Considerations

• Radiometric calibration such as a full aperture 

calibrator may be necessary due to 

microbolometer drift

– Smaller aperture systems will be easier

• Microbolometers typically have relatively 

large nonuniformity in response (TDI helps)



Calibration/Validation Considerations

• Constellations of sensors require cross-

calibration studies

– Separate multiple sensor induced effects from 

phenomenology

• Vicarious calibration approach required

– Small satellites may not carry on-board calibrators

– Small satellites may not be able to perform 

lunar/stellar calibrations

• Water bodies typically used

– Lake Tahoe (JPL - Simon Hook)

– Stennis Space Center
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Calibration / Validation Techniques
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• Float employs 2 Heimann 

radiometers to measure skin 

surface temperature

• Additional Heimann measures 

cold sky temperature

• Two honeycomb black bodies 

calibrate radiometers during field 

exercises

• Thermocouple probe measures 

bulk water temperature


