

Landsat-8 Operational Land Imager Spectral and Radiometric Characterization

Brian Markham¹, Geir Kvaran², Julia Barsi³, Ron Morfitt⁴, Lawrence Ong³, Ed Kaita³, Stuart Biggar⁵

¹NASA/GSFC; ²Ball Aerospace; ³SSAI/GSFC; ⁴USGS/EROS; ⁵University of Arizona

- OLI overview and definitions (if necessary)
- Spectral Characterization
- Radiometric Characterization
- Changes for Landsat-9 OLI-2
- Considerations to improve data harmonization
- Backup Slides

OLI Overview and Definitions

- OLI Salient Characteristics
- OLI Optical and Focal Plane Layout
- Definition
 - Uncertainty parameter, associated with the result of a measurement, that characterizes the dispersion of the values that could reasonably be attributed to the measurand (BIPM definition), a.k.a, a quantitative measure of the doubt of the validity of the result of a measurement
 - Begs the question of what quantity are we trying to measure
 - e.g., is it the reflectance or radiance at a specific wavelength, within a specific square-wave bandpass, or the spectrally weighted value defined by the instrument we are using.
 - Similarly, is it a reflectance or radiance at a specific point, within a defined, e.g., square wave response pixel, a specific ground target area or the spatially weighted value defined by the instrument we are using.
 - The answer to this question determines what error sources to include in an uncertainty analysis and how to reduce the errors

The Operational Land Imager (OLI) Salient Characteristics.

Band (#) Band Name	Center Wavelength(nm)	Bandwidth (nm)	IFOV(m)	Active Detectors (#)
1	Coastal-Aerosol (CA)	443	16	30	6916 (14 × 494)
2	Blue	482	60	30	6916
3	Green	561	57	30	6916
4	Red	655	38	30	6916
5	Near-IR (NIR)	865	28	30	6916
6	Short Wave IR-1 (SWIR 1)	1609	85	30	6916
7	SWIR 2	2201	187	30	6916
8	Panchromatic (Pan)	590	172	15	13,832 (14 × 988)
9	Cirrus	1373	20	30	6916

OLI Spectral Characterization

- Measurements
- Limitations/Uncertainties
- Contribution to Radiometric uncertainty

OLI Spectral Response Measurements

- Components
 - Detectors (35K Si 30m, 21K HgCdTe, 14K Si-15m) Mirrors (4), Window(1), Filters (9x14)
 - Witness samples/flight parts (wafers prior to dicing for filters)
 - In-band and OOB
 - AOI and temperature effects modeled
- Focal Plane Module (combined detectors and filters)
 - Out-of-band primarily, though in-band coarsely measured
 - Operational temperature with AOI effects approximated
 - Flood illumination; all bands and all detectors
- Instrument (full system)
 - In-band only; partial aperture; partial field
 - ~10 % of detectors across focal plane
 - 16 locations on focal plane; ~50 detectors per location
 - Band averages are published spectral responses

Spectral Response Uncertainties (OOB measurement)

FPM Level measurements capture within FPM Crosstalk, though not between. Flood source Testir does not distinguish in-field from out-of-field Response

Instrument level OOB testing (not done on OLI), Planned for OLI-2 using tunable laser based system SWIR1 FPM 09 Out-of-Band Relative Spectral Response

Module-level response —Component-level system response

Spectral Response Uncertainties (within band variability)

Red Spectral Radiance **Red Module-Average Response** Differences due RSR 1 0.25 0.9 0.8 0.15 **Relative Spectral Response** Radiance [%] 0.7 0.05 0.6 0.5 -0.05 1000 2000 3000 4000 5000 6000 0.4 -0.150.3 -0.250.2 Detetor Index 0.1 Vegetation * Bare Desert Sun 0 625 635 645 655 675 685 665 Wavelength [nm]

All OLI Red band filters were from the same wafer, though slight non-telecentricity of OLI results in band edges shifting towards the edges of the focal plane, resulting in target dependent response changes across the focal plane

Spectral Response Uncertainties (within-band variability)

		Maximum Di	scontinuity	Average Disc	ontinuity	RMS Variability			
Ba	nd V	Vegetation (%)Soil (%)		egetation (%)Se	oil V	Vegetation (%)Soil (%)			
C	ĊA	0.19	0.08	0.12	0.05	0.09	0.04		
E	Blue	0.16	0.03	0.05	0.01	0.07	0.02		
C	freen	0.11	0.02	0.05	0.01	0.07	0.01		
F	Red	0.15	0.05	0.06	0.01	0.09	0.02		
Ν	NIR.	0.11	0.02	0.05	0.01	0.04	0.01		
S	WIR1	0.16	0.03	0.10	0.08	0.09	0.01		
S	WIR2	0.07	0.35	0.03	0.08	0.03	0.08		
F	an	0.19	0.05	0.08	0.02	0.05	0.02		

Spectral Response Contributions to Radiometric Uncertainty

- Use of band-average RSR
 - Filters well matched; generally small effect ±0.1%
- Uncertainty in RSR
 - Differences between component and instrument give a measure of uncertainty; generally 0.5% or less
- Out-of-band contribution
 - Integrated OOB (beyond 1% response) typically 0.5% or less of in-band for solar spectra (except Cirrus)
 - Crosstalk (out-of-field) contribution minor; except in Cirrus where there is often no in-band signal
- Difference from perfect square wave (not analyzed)

RSR Uncertainty Contribution to Radiometric Error (Difference between component and instrument level RSR's impact on Target Radiance)

Generally less than 0.5% "uncertainty" in radiance induced by using component versus integrated instrument RSR's (exception is Pan band)

OLI Radiometric Characterization

- Radiance versus Reflectance Based Calibration Discussion/History
- OLI On-board Calibration Hardware
- Radiometric Characterization/contributors to uncertainty
- Reflectance Calibration Methodology, Traceability and Uncertainty
- Radiance Calibration Methodology, Traceability and Uncertainty
- Comparison of "Landsat solar irradiance" to solar irradiance models (as measure of OLI-2 radiometric uncertainty)

Radiance and Reflectance Calibration

- All Landsat sensors from MSS on Landsat-1 to ETM+ on Landsat-7 had strictly a radiance based radiometric calibration provided (tied to NIST standard of spectral irradiance through FASCAL calibrated FEL lamp transferred to integrating sphere)
 - Landsat-7 ETM+ had a diffuser, though reflectance-based calibration was not provided as part
 of data product (it could have been, but the diffuser was not well characterized in the SWIR
 bands)
- Landsat-8 OLI had both a radiance and a reflectance based calibration (ref cal tied to NIST through STARR calibrated reference diffuser)
 - Both provided to users, each separately traceable to standards
 - Similar to MODIS, though MODIS radiance was tied to reflectance call through a solar irradiance model
- Landsat-9 OLI-2 will be similar to Landsat-8 OLI (both calibrations provided)
- Current preference appears to be reflectance-based calibration due to lower uncertainty

OLI On-Board Radiometric Calibration Capabilities

Shutter once an orbit Full aperture diffusers (2) used at different frequencies weekly, semi-annually Stimulation lamps (3 pairs) used at different frequencies daily, bi-weekly, semi-annually Moon

once a lunar cycle all FPM's

Radiometric Characterization/contributors to uncertainty

- Stability
 - Responsivity stability between solar calibrations
 - Dark level stability between shutter collects
- Linearity
 - Less well characterized than intended; radiance linearity testing uncertainty dominated by sphere radiance uncertainty in non-controlled bands in radiance feedback mode
 - Relied on reciprocity, using integration time tests where radiance linearity testing was missing
 - Imperfect understanding of reciprocity
- Uniformity
 - Requirement was 0.5% (1 sigma) across full field of view (FFOV) (plus some more localized requirements)
 - Extensive pre-launch analysis indicated FFOV requirement would be met
 - Contributors include spectral, diffuser characterization residual, non-linearity correction residual, noise, dark current residual
- Stray Light
 - Internal reflections in solar diffuser increase signal by ~1% based on modeling; testing results consistent, though with significant error bars

OLI Reflectance Calibration: Methodology, Traceability and Uncertainty

From Ball Aerospace Document

OLI working Diffuser Reflectance - 45° incidence; 45° view; all positions, 180±2° relative azimuth University of Arizona data (under contract from Ball Aerospace)

~5% reflectance change across OLI 15° FOV

Reflectance Factor

Reflectance Calibration Uncertainty Estimates:

Radiances of L_{typical} and above (pre-launch evaluation)

Torm	Value								
Term	CA	Blue	Green	Red	NIR	SWIR1	SWIR2	Pan	Cirrus
Initial Diffuser BRDF	1.4%	1.3%	1.1%	1.0%	1.0%	1.7%	1.4%	1.1%	1.7%
Geom Unc	0.9%	0.9%	0.9%	0.9%	0.9%	0.9%	0.9%	0.9%	0.9%
Diffuser Light Shade Stray Light	0.7%	0.7%	0.7%	0.7%	0.7%	0.7%	0.7%	0.7%	0.7%
Stray Light	0.7%	0.7%	0.7%	0.7%	0.7%	0.7%	0.7%	0.7%	0.7%
Pristine -> Wkg	0%	0%	0%	0%	0%	0%	0%	0%	0%
Wkg -> Scene	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%
Non-Linearity	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%
FFOV Non-Uniformity	0.3%	0.2%	0.3%	0.3%	0.3%	0.3%	0.4%	0.3%	0.3%
Long Term Stability 1 ₀	0.1%	0.1%	0.1%	0.0%	0.0%	0.3%	0.2%	0.1%	0.6%
Total Unc.	2.1%	2.0%	1.9%	1.8%	1.8%	2.3%	2.1%	1.9%	2.4%

Radiance Calibration Methodology, Traceability and Uncertainty

- Artifact Characterization and Validation (SSS, CXR, DSS)
- Transfer to Instrument
- Transfer to Orbit
- Uncertainty estimates

Radiance Calibration Methodology and Traceability (1 of 2)

Radiance Calibration Methodology and Traceability (2 of 2)

. . .

Radiance Calibration Uncertainty Estimates (with TTO uncertainty included): Radiances of L_{typical} and above (pre-launch evaluation)

Torm	Value									
Term	CA	Blue	Green	Red	NIR	SWIR1	SWIR2	Pan	Cirrus	
Initial DSS	2.2%	1.9%	1.8%	1.8%	1.8%	2.4%	2.3%	2.0%	2.4%	
DSS -> SD	1.1%	1.1%	1.1%	1.1%	1.1%	1.1%	1.1%	1.8%	0.0%	
Spectral (DSS -> Solar)	-0.2%	0.2%	-0.3%	0.2%	0.0%	0.2%	0.0%	-1.4%		
Stray Light	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%		
Source Stab.	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%		
Non-Linearity	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%		
тто	2.1%	1.9%	1.8%	1.6%	1.9%	1.7%	1.7%	1.7%	3.0%	
Atm. Trans	1.4%	1.2%	1.0%	0.8%	0.7%	0.5%	0.5%	0.9%		
Helio Trans	1.2%	1.1%	1.1%	1.0%	1.5%	1.3%	1.3%	1.1%		
Non-Linearity	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%		
Pristine -> Wkg	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	
Wkg -> Scene	1.0%	1.0%	1.0%	1.0%	1.0%	1.1%	1.0%	1.2%	1.0%	
Spectral (Solar -> Scene)	0.1%	0.0%	-0.2%	0.1%	0.0%	-0.4%	-0.2%	-0.6%	0.0%	
Non-Linearity	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	
FFOV Non-Uniformity	0.3%	0.2%	0.3%	0.3%	0.3%	0.3%	0.4%	0.3%	0.3%	
Long Term Stability 1σ	0.1%	0.1%	0.1%	0.0%	0.0%	0.3%	0.2%	0.1%	1.1%	
Total Unc.	3.4%	3.1%	3.0%	2.9%	3.0%	3.3%	3.2%	3.4%	4.1%	
Rqmt.	5.0%	5.0%	5.0%	5.0%	5.0%	5.0%	5.0%	5.0%	5.0%	
Margin	46.9%	62.9%	68.0%	75.0%	65.7%	49.9%	54.5%	47.6%	21.1%	

Characterization Changes for Landsat-9 OLI-2

- GLAMR
 - Spectral all bands all detectors at instrument level
 - Some OOB/crosstalk coverage at instrument level
 - Absolute Calibration Validation
 - Linearity validation [TBD]
- 14-bit
- Linearity testing
 - FPE
 - Instrument
- Somewhat reduced sphere based radiometric scale realization efforts (fewer participants)

Thoughts on Harmonization

- Make instruments the best they can be:
 - Stability is the key
 - Adequate on-board capabilities to track
 - Uniformity in response across focal plane, e.g., spectral: telecentricity, filter uniformity
- Characterize response sufficiently
 - Flat fielding/diffuser BRDF
 - Linearity
 - Spectral
- Commonality of Designs
 - Spectral filter specifications, i.e., same bands to extent possible
 - Angular coverage, GSD, PSF, etc.

