Future of Remote Sensing and Data Quality Panel discussion at JACIE 2020

Fabio Pacifici

Fellow Scientist & Distinguished Member of Technical Staff Research and Development

Pixels / Services vs Orbit / Ground

- In Orbit
 - WorldView Legion
 - Why Quality Matters
- On the Ground
 - Interoperability and ARD
 - Absolute radiometric calibration
 - Atmospheric Compensation (AComp)
 - Registration
 - Advanced Products
 - High Definition (HD)
 - The Earth in 3D

In Orbit WorldView Legion

Our next-generation satellites

WorldView Legion is a fleet of six high-performing satellites that expands our ability to revisit the most rapidly changing areas on Earth to better inform critical, time-sensitive decisions.

- Launches in 2021
- Will enable up to 15 revisits per day
- Triples Maxar capacity to collect 30 cm imagery
- Triples our overall capacity over high-demand areas
- Highest image quality and geometric accuracy available
- Simultaneous tasking, image and downlink with customer ground stations

CAPACITY

MAXAR

Satellite specifications

	Launch 1	Launch 2
Number satellites	2	4
Orbit	SSO	MIO
Resolution Panchromatic 8-band multispectral NIIRS rating	29 cm 1.16 m 5.9	34 cm 1.36 m 5.7
Spacecraft size and mass	Size: 3 m tall x 2 m x 2 m (not including width of solar array) Wet mass: < 750 kg	
Sensor bands	Panchromatic: 450-800 nm 8 multispectral Coastal: Blue: 400-450 nm Blue: 400-510 nm Green: 510-580 nm Yellow: 585-612 nm Red: 630-690 nm Red Edge 1: 695-715 nm Red Edge 2: 730-750 nm Near-IR: 770-895 nm	
Swath width	At nadir: 9 km	
Geolocation accuracy (CE90)	< 5 m CE90 without ground control points	

Enabling up to 15 revisits per day

High revisit areas

Low latency matters for an intelligence advantage

Reducing the time between collection and delivery makes intelligence more actionable.

In Orbit Why Quality Matters

X

Native resolution matters for detailed insight

Legion class

1.5 m GSD NIIRS 3.4 © 2020 Maxar Technologies

Company Proprietary – External Recipients

1.0 m GSD

NIIRS 4.0

0.5 m GSD NIIRS 5.0

0.3 m GSD NIIRS 5.7

X

Native resolution matters for detailed insight

of Objects Detected

Spectral richness matters for seeing hidden details

Geolocation accuracy matters for precision mapping

5 M ACCURACY

High agility matters for challenging collections

WorldView Legion will dramatically slew to collect the maximum number of images and at the most extreme angles.

Monitoring throughout the day

Increased collection opportunities over areas of high interest, unlocking monitoring and change-detection capabilities.

Analytics at scale

Combining the most advanced geospatial analytics and expertise available with a continuous feed of current imagery will equip customers with unrivaled insights and answers for a competitive edge. This wave of fresh, detailed content will redefine how we enable significantly more accurate, comprehensive, and timely pattern-of-life and human geography analysis.

EL PASO TEXAS | AUGUST 14 2019

EL PASO TEXAS | NOVEMBER 18 2019

On the Ground Interoperability and ARD

CEOS CARD4L

calibration, traceability, surface reflectance, accuracy, uncertainty

CEOS ANALYSIS READY DATA

CEOS Analysis Ready Data for Land (CARD4L) are satellite data that have been processed to a minimum set of requirements and organized into a form that allows immediate analysis with a minimum of additional user effort and interoperability both through time and with other datasets.

Absolute radiometric calibration

- We employ the reflectance-based vicarious calibration approach developed by the University of Arizona in the late 80's and employed by NASA and other international agencies
- This method uses in-situ measurements of surface reflectance (of spectrally and spatially homogenous targets) and atmospherics in a radiative transfer model to predict at-sensor radiance for validation and calibration efforts
- Many measurements/dates are used in a regression to determine required adjustments to the pre-launch calibration

© 2020 Maxar Technologies Company Proprietary – External Recipients

X

Radiometric agreement with Landsat 7/8

- RadCalNet data are given at Nadir. MAXAR sensors will typically have an ONA of 5 30 degrees. Variation in ONA will increase the variability in MAXAR data due to surface BRDF and longer atmospheric path and < 10% is considered good
- GeoEye-1, WorldView-2, and WorldView-3 data shows good correlation with Landsat 7 & 8 data, shown here at Railroad Valley, NV, USA RadCalNet site
- WV02 is showing a relative difference of < 6%, and WV03 and GE01 are < 5%. Comparable Landsat bands are within 5%

MAXAR

Atmospheric Compensation (AComp)

ASD Spectrometer Measurements

Measurements at equinox:

- asphalt surfaces (mainly large roads and parking lots)
- concrete
- tar materials (running tracks, basketball and tennis courts)
- sand (beach volleyball courts)

180°

(e)

13875

Validation (1/2)

MAXAR

X

Validation (2/2)

ARD as a stack of images ...

Orthorectification without/with registration

Orthorectification without/with registration

Orthorectification without/with registration

object detection/identification

no calibration

surface reflectance

ARD: There is no one-size-fits-all solution

no calibration

surface reflectance

MAXAR

ARD: There is no one-size-fits-all solution

(a)

X

volumetric scattering (b)

(c)

BRDF:

- sun-viewing geometry
- material
- tering structure

ARD: READY for what?

- users in established markets (agriculture, maritime) are very familiar with data (either optical/hyperspectral, SAR, LiDAR, etc..), and expect greatest quality in terms of sensor calibration, accuracy, and uncertainty
- users in new markets (insurance, finance) often do not necessarily understand (or care) about these characteristics, and all they need are insights.
 - If insights are not available when needed, then no application will be impactful

Factory output **Customer segments**

- Financial Services
- Retail
- Manufacturing

Insight

0

in "all" parking lots

Image of parking lot

ARD: Different needs

- Civil Government vs Industry vs Intelligence
 - different missions, timelines, requirements
 - different users and skills

Key characteristics for datasets

MAXAR

On the Ground - Advanced Products High Definition (HD)

High Definition

- The HD technology is a proprietary technique developed by Maxar that improves the visual clarity ("acutance") of an image
- The improved clarity means there is less visual clutter and pixelation that can distract or confound interpretation by human eyes or computer algorithms
- By using this technology, Maxar enables faster and more accurate data extraction from images collected by our satellite constellation.

11.12.2020 | Earth Intelligence

Introducing 15 cm HD: The Highest Clarity From Commercial Satellite Imagery

By: Chris Formeller, Senior Imagery Product Manager, Maxar Technologies

Read Time: 3 minutes

Native (30 cm)

Native (30 cm)

How to measure quality and improvements?

- Question:
 - Compared to 50 cm native resolution imagery, can HD imagery objectively improve the outcomes of detecting objects using machine learning?

- Methodology:
 - Holding everything constant except HD processing, train two new object detection models and compare performance

Imagery Sources and Preparation

- 11 catalog images at native 50 cm resolution
 - ~50% WorldView2, ~50% GeoEye1
- Two versions of each image strip prepared: one at 50cm (native resolution) and one at 25cm (HD)
- All images prepared in the same way:
 - 50cm and HD image pairs are pixel aligned and consistently colored (AComp, DRA, Ortho, all consistent)
- Random spatial sample of image chips from used to cover geographic and image variability

40

Model Training

- Model architecture
 - Faster RCNN Model
- Model training
 - Separate models trained on both HD and native resolution using same model parameters

(IOU: intersect-over-union)

41

On the Ground - Advanced Products The Earth in 3D

WorldView Legion's agility and stereo capabilities will substantially increase our ability to model the Earth in 3D.

MAXAF

Thank you!

