Sensor interconsistency to achieve climate-quality measurements

K. Thome

NASA/GSFC
Need for inter-consistency

Climate-system modeling relies on a wide array of current (and future) systems

- Research-quality systems
- Operational weather systems
- Requires consistently calibrated and validated data sets
 - Intercalibration to a few high-quality sensors
 - Valid across time and multiple countries
Climate-quality data

“Absolute” uncertainties < 0.3% in band-integrated albedo

- TRUTHS (Traceable Radiometry Underpinning Terrestrial- and Helio-Studies)
- CLARREO (Climate Absolute Radiance and Refractivity Observatory)
Current calibration approaches

Best sensors have reflectance accuracy of 3.6% (k=2) in mid-visible [4.2% in radiance]

3.6% (k=2)

None of these approaches is adequate for climate-quality measurements

Intercomparisons 1.0% (k=2) relative
Detector-based approaches for climate quality

Near-monochromatic sources can be characterized to 0.09% (k=2)
TRUTHS takes that laboratory to space

- Primary reference is electric substitution cryogenic radiometer
- Tunable monochromatic beam calibrates other TRUTHS instruments
- Earth imager aperture illuminated by deployable diffuser
- Measures incoming and reflected solar
CLARREO relies on a ratioing radiometer approach to obtain reflectance

- Advantage is you have a known on-orbit calibration source
- Still requires careful characterization of the sensor in the laboratory
 - Stray light
 - Detector stability
 - Noise behavior

Benchmark reflectance from ratio of earth view to measurements of irradiance while viewing the sun

Lunar data provide calibration verification
Two approaches 1) near simultaneous views & 2) site characterization

- Near-coincident views require chance coincidences or active pointing
- Site characterization approaches rely on careful site evaluation to allow at-sensor radiance predictions
- Methods with SI traceability do not require sensor data to overlap in time
Site characterization

SI-traceable, ground-based measurements

- **Not** a sensor-to-sensor approach
- Allows calibration relative to an agreed standard
- **Multiple sensors** can be calibrated
Improved site characterization approach

Selected Test Site

- **Ground-based Measurements**
 - Radiance is for arbitrary
 1) Time
 2) View angle
 3) Sun angle
 - SI-Traceable with documented error budget and uncertainty

- **Satellite-based Measurements**

- **Airborne-based Measurements**

- **Model-based “Measurements”**

- **Predicted At-sensor radiance**
 - Radiance is for arbitrary
 1) Time
 2) View angle
 3) Sun angle
 - SI-Traceable with documented error budget and uncertainty

Requires highly accurate sensors to decouple atmospheric, surface, and sensor effects

Moves away from one-to-one cross calibrations and empirical only
Why need high-accuracy sensors?

MODIS and ASTER “easiest” case

- Same platform, coincident views, similar bands
- ASTER Band 1 (green band) results using MODIS
- Scatter caused by
 - Spectral band differences
 - Registration effects
 - Sensor effects
Differences between sensors

High-accuracy, imaging spectrometry would provide necessary understanding of test sites

- Cannot decouple
 - On-orbit sensor effects
 - Atmospheric variability
 - Surface variability

- All three play a role
 - Better sensor agreement in the NIR where SNR is largest for sensors
 - Atmospheric effects are not as dominant in NIR

- Improved field sensor design and characterization would improve results
- Improved on-orbit sensors would allow decoupling of uncertainties
Why need hyperspectral?

<table>
<thead>
<tr>
<th>ETM+ Band 2 Analogs</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>A: Landsat-7 ETM+ B2</td>
<td>1</td>
<td>0.996</td>
<td>1.005</td>
<td>0.990</td>
<td>0.988</td>
<td>0.989</td>
</tr>
<tr>
<td>B: EO-1 ALI B2</td>
<td>1</td>
<td>1.009</td>
<td>1</td>
<td>0.994</td>
<td>0.992</td>
<td>0.993</td>
</tr>
<tr>
<td>C: Terra ASTER B1</td>
<td>1</td>
<td>0.985</td>
<td>0.983</td>
<td>0.984</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D: Terra MODIS B4</td>
<td>1</td>
<td>0.998</td>
<td>0.999</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E: Terra MODIS B12</td>
<td>1</td>
<td>1.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F: Terra MISR B2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Uncertainty due to spectral differences decrease as **hyperspectral** data of sites are accumulated.

Ground data, Hyperion, SCIAMACHY
Key measurements

Spectral and directional reflectance of surfaces are highest priority

- Temporal sampling
 - directional reflectance
 - Site stability
- Imaging provides spatial information
- Spectral samples aggregated to simulate bands
- Imaging spectrometry can lead to knowledge of surface morphology
Developing new laboratory approaches for space sensors allows more accurate characterization of field and airborne systems.
Climate-quality requirements will lead to important improvements in site characterization

- Move away from one by one empirical comparisons between sensors
- Requires agreed upon standard against which to compare sensors and products
- Climate-quality imaging sensors and field instruments will provide the data necessary for accurate physical models
- Such methods will provide improved relative agreement and eventually lead to absolute results with better understood uncertainties