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Sensor interconsistency to achieve climate-
quality measurements
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Need for inter-consistency

Climate-system modeling relies on a wide array
of current (and future) systems

s Research-quality systems

s Operational weather
systems

s Requires consistently
calibrated and validated |
data sets T —

e Intercalibration to a e i '
few high-quality
SEeNsors

e Valid across time and
multiple countries
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Climate-quality data

“"Absolute” uncertainties < 0.3% in band-

infegrated albedo
= TRUTHS (Traceable Radiometry Underpinning Terrestrial- and Helio-

Studies)
CLARREO (Climate Absolute Radiance and Refractivity Observatory)
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Current calibration approaches

Best sensors have reflectance accuracy of
3.6% (k=2) in mid-visible [4.2% in raohonce]

6% (k= -2) el — IR
None of these 4_81"“_ "
: O Diffaser \

approaches is
adequate for - SRCA
climate-quality ’
measurements

0.2% (k=2)
relative

Intercomparisons
1.0% (k=2) relative




Detector-based approaches for climate quality

Near-monochromatic sources can be
characterized to 0.09% (k=2)
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TRUTHS

TRUTHS takes that

laboratory to space
= Primary reference is
electric substitution
cryogenic radiometer

s [unable
monochromatic
beam calibrates
other TRUTHS
Instruments

=« Earth imager aperture
illuminated by
deployable diffuser

= Measures incoming
and reflected solar

_Ref detector Ibtflt
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(irradian p sivity
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Filter radiometer (in radiance
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Imager using solar
illuminated diffuser




CLARREO

CLARREQO relies on a ratioing radiometer
approach to obtain reflectance

s Advantage is you Benchmark reflectance from ratio
have a known on-orbit of earth view to measurements of
calibration source Irradiance while viewing the sun

a Still requires careful
characterization of the
sensor in the laboratory

o Stray light
o Detector stability
o Noise behavior

Lunar data provide
calibration verification




Intersensor comparison approaches

Two approaches 1) near simultaneous views &
2) site characterization

Ground-based

Measurements Predicted
Selected Test At-sensor

Site radiance

Satellite-based
Measurements

Airborne-based
Measurements

Radiance is for arbitrary
1) Time
Model-based 2) View angle
“Measurements” 3) Sun angle

Sl-Traceable with
.. . documented error budget
A P and uncertainty

s Near-coincident views require chance coincidences or
active pointing

s Site characterization approaches rely on careful site
evaluation to allow at-sensor radiance predictions

= Methods with S| fraceability do not require sensor datQe
to overlap in time




Site characterization
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ASTER comparison to in-situ
measurements

Sl-fraceable,
ground-based

measurements
= Not a sensor-fo- 10 -
sensor approach 15
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Improved site characterization approach

Selected Test
Site

Requires highly accurate
sensors to decouple
atmospheric, surface, and
sensor effects

Moves away from one-to-
one cross calibrations
and empirical only

Ground-based

At-sensor
radiance
Satellite-based |
Measurements
Airborne-based /
Measurements
Radiance is for arbitrary
1) Time
Model-based 2) View angle
“Measurements” 3) Sun angle

SlI-Traceable with
documented error budget
and uncertainty A




Why need high-accuracy sensors?

Calibration for ASTER green
band using MODIS MOD'S Gﬂd ASTER
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Differences between sensors

High-accuracy, imaging spectrometry would
provide necessary understanding of test sifes

= Cannot decouple 15_4m_.w
o On-orbit sensor effects ‘g s———r— L' (/\
e AtTmospheric variability ;;, -5 I|1 \_1.7)
o Surface variability T

s All three play arole

e Better sensor agreement in the NIR where SNR is
largest for sensors

o Atmospheric effects are not as dominant in NIR

s Improved field sensor design and characterization
would improve results

s Improved on-orbit sensors would allow decoupling
of uncertainties




Why need hyperspectral?

ETM+ Band 2 Analogs A B C D E F
A: Landsat-7 ETM+ B2 1 0.996 1.005 0.990 0.988 0.989
B: EO-1 ALI B2 1 1.009 0.994 0.992 0.993
C: TerraASTER B1 1 0.985 0.983 0.984
D: Terra MODIS B4 1 0.998 0.999
E: Terra MODIS B12 1 1.001
F: Terra MISR B2 1

— Landsat-7 ETM+ B2 ——EO-1ALIB2 — Terra MODIS B4

- - - Terra MODIS B12 —TerraASTR B1 —Terra MISR B2 Uncertalnty due to

;: spectral differences

g decrease as

= hyperspectral data of
2% sites are accumulated
g 0.2

% 0.0 Ground data,
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Key measurements

Spectral and directional reflectance of
surfcces ore h|ghes’r priority

x [emporal sampling

e directionaql
reflectance

o Site stability

x Imaging provides
spatial information

s Spectral samples
aggregated to
simulate bands

= Imaging
spectrometry can

lead to knowledge of e

surface morphology

Atmospheric model

Surface Model




Improves field sensor design and characterization

Broad-band

\ ey Laser-based,
S\ sphere calibration

detector-based
calibration

Developing new laboratory approaches for space sensors
allows more accurate characterization of field and
airborne systems
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Ground-based

Summary Predicted

Selected Test At-sensor

Site radiance

Satellite-based
Measurements

Climate-quality
requirements will lead to
Important improvements

in site characterization B

Measurements” 3) Sun angle

Airborne-based
Measurements

Sl-Traceable with
documented error budget

= Move away from one by one empirical and uncertainty
comparisons between sensors

» Requires agreed upon standard against which to
compare sensors and products

s Climate-quality imaging sensors and field
iInstruments will provide the data necessary for
accurate physical models

s Such methods will provide improved relative
agreement and eventually lead to absolute results
with better understood uncertainties




