Radiometric Characterization of the IKONOS, QuickBird, and OrbView-3 Sensors

Kara Holekamp

Science Systems and Applications, Inc.
John C. Stennis Space Center, MS 39529
phone: 228-688-3840
e-mail: kara.holekamp@ssc.nasa.gov

Civil Commercial Imagery Evaluation Workshop
Laurel, Maryland, USA
March 15, 2006
NASA Stennis Space Center, MS

- **Site:** Scattered buildings within a heavily wooded area; manmade reservoirs and canals

- **Elevation:** 5.5 m – 10 m

- **Centerpoint:** 30.356° N, 89.62° W

- **In-situ Instrumentation:** Analytical Spectral Devices FieldSpec® FR spectroradiometers, Yankee multifilter rotating shadowband radiometers (MFRSRs), automated solar radiometers (ASRs), novel hyperspectral sun photometer, Sippican® radiosonde, Yankee total sky imager, 20 m x 20 m radiometric tarps, 99% reflectance Spectralon® panels
NASA SSC Target Field

QuickBird Imagery
March 12, 2005
True-Color Pan-Sharpened
Wiggins, MS

- **Site**: Rural area with a gravel pit sand site, large monoculture fields, and a cut-grass amateur golf course

- **Elevation**: 70 m – 85 m

- **Centerpoint**: 30.79° N, 89.06° W

- **In-situ Instrumentation**: Analytical Spectral Devices FieldSpec® FR spectroradiometers, Yankee MFRSRs, ASRs, Yankee total sky imager, 20 m x 20 m radiometric tarps, 99% reflectance Spectralon® panels

Includes material © Space Imaging, LLC
Wiggins Target Fields

IKONOS Imagery
March 24, 2005
True-Color Pan-Sharpenced

Rye Grass Field
Gravel Pit
Sand Site
Golf Course with Radiometric Tarps

Includes material ©
Space Imaging, LLC
Site: Heavily wooded rural area with a field containing an Aerosol Robotic Network (AERONET) site

Elevation: 475 m

Centerpoint: 45.95° N, 90.27° W

In-situ Instrumentation: Analytical Spectral Devices FieldSpec® FR spectroradiometers, CIMEL Electronique automatic suntracking photometer, novel hyperspectral sun photometer, 20 m x 20 m radiometric tarps, 99% reflectance Spectralon® panels
Park Falls Target Field

QuickBird Imagery
August 5, 2005
True-Color Pan- Sharpened

Includes material © DigitalGlobe™
Radiometric Tarps

• Four 20 m x 20 m tarps with reflectance values of approximately 3.5%, 22%, 34%, and 52% within spectral measurement range
• Peak-to-peak variation in reflectance less than 10% within any 100 nm spectral band within spectral measurement range
• Less than 10% variation in reflectance values when measuring tarps from 10° to 60° off axis within spectral measurement range
• Spectral measurement range of 400 nm – 1050 nm
• Each side is straight to within ±6.0 cm over the 20-m length
• Each tarp has 60 square witness samples measuring 30.5 cm x 30.5 cm

Manufactured by MTL Systems, Inc. / Group VIII Technology, Inc.
BRDF Correction

• Bidirectional Reflectance Distribution Function (BRDF) of radiometric tarp witness samples measured in laboratory
 – Witness samples removed from tarps after ground truth data collection
 – Sun and satellite geometry recreated in the laboratory to determine BRDF correction factors for each radiometric tarp
• Calculated correction factors incorporated into reflectance data files
SSC Calibration and Characterization of Spectroradiometers

• NASA SSC maintains four Analytical Spectral Devices FieldSpec® FR spectroradiometers
 – Laboratory transfer radiometers
 – Ground surface reflectance for verification and validation (V&V) field collection activities
• Radiometric Calibration
 – National Institute of Standards and Technology (NIST)-calibrated integrating sphere serves as source with known spectral radiance
• Spectral Calibration
 – Laser and pen lamp illumination of integrating sphere
• Environmental Testing
 – Temperature stability tests performed in environmental chamber
Novel Hyperspectral Sun Photometer

- Novel hyperspectral sun photometer is capable of acquiring measurements comparable to both ASRs and MFRSRs by making use of the laboratory radiometric calibration of the FieldSpec® FR spectroradiometers
 - Optical Depth/Transmission
 - Diffuse-to-Global Ratio
- Sun photometer developed with fewer limitations than current sun photometers, utilizing equipment already used in the field
 - Radiometrically calibrated FieldSpec® FR spectroradiometers
 - 99% reflectance Spectralon® panels
- Measurements are made only at the time of overpass, thus reducing the impact of a changing atmosphere on the calculation of optical depth
 - Resulted in a change to previously published OrbView-3 radiometric characterization

Sample Results

<table>
<thead>
<tr>
<th>Band</th>
<th>ASR 27</th>
<th>ASD</th>
<th>Difference</th>
<th>Percent Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>380 nm</td>
<td>0.588</td>
<td>0.5982</td>
<td>-0.010</td>
<td>-1.74%</td>
</tr>
<tr>
<td>400 nm</td>
<td>0.495</td>
<td>0.4852</td>
<td>0.010</td>
<td>1.99%</td>
</tr>
<tr>
<td>440 nm</td>
<td>0.366</td>
<td>0.3216</td>
<td>0.044</td>
<td>12.14%</td>
</tr>
<tr>
<td>520 nm</td>
<td>0.224</td>
<td>0.1988</td>
<td>0.025</td>
<td>11.25%</td>
</tr>
<tr>
<td>610 nm</td>
<td>0.161</td>
<td>0.1563</td>
<td>0.005</td>
<td>2.91%</td>
</tr>
<tr>
<td>670 nm</td>
<td>0.108</td>
<td>0.1002</td>
<td>0.008</td>
<td>7.26%</td>
</tr>
<tr>
<td>780 nm</td>
<td>0.07</td>
<td>0.0691</td>
<td>0.001</td>
<td>1.33%</td>
</tr>
<tr>
<td>870 nm</td>
<td>0.049</td>
<td>0.0508</td>
<td>-0.002</td>
<td>-3.58%</td>
</tr>
</tbody>
</table>

RMS 1:8 0.019
Comparison to Spectralon Panel

• Verification of parameters used to generate Moderate Resolution Transmittance (MODTRAN) at-sensor radiance estimate
 – Measuring the radiance of Spectralon® panel with a well-calibrated spectroradiometer is a way of measuring atmospheric global and diffuse irradiance
 – Use ground truth data and geometry modeling an ASD FieldSpec® FR spectroradiometer measuring a 99% reflectance Spectralon® panel as input to MODTRAN to predict radiance
 – Compare MODTRAN-calculated radiance to actual radiance measured from Spectralon® panel to verify the atmospheric model
IKONOS Radiometric Characterization
IKONOS Data Acquisitions

<table>
<thead>
<tr>
<th>Site/Date</th>
<th>Overpass Time (UTC)</th>
<th>Satellite Elevation</th>
<th>Satellite Azimuth</th>
<th>Sun Elevation</th>
<th>Sun Azimuth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stennis 12/15/04</td>
<td>16:45</td>
<td>68.9 deg</td>
<td>118.6 deg</td>
<td>34.0 deg</td>
<td>160.8 deg</td>
</tr>
<tr>
<td>Wiggins 3/24/05</td>
<td>16:50</td>
<td>86.3 deg</td>
<td>71.9 deg</td>
<td>56.3 deg</td>
<td>146.1 deg</td>
</tr>
<tr>
<td>Stennis 4/15/05</td>
<td>16:51</td>
<td>72.7 deg</td>
<td>25.4 deg</td>
<td>64.5 deg</td>
<td>138.8 deg</td>
</tr>
</tbody>
</table>

Standard imagery
Cubic Convolution resampling, MTFC Off
IKONOS Sample Calibration Summary

Red Band Calibration Summary

NASA Radiance = DN / 93.00 ± 3.31
IK Radiance = DN / 94.90
Inband Radiance Calibration Coefficients

<table>
<thead>
<tr>
<th>Bandwidth FWHM ((\mu m))</th>
<th>NASA Team Estimate [DN/(W/m(^2) sr)]</th>
<th>IKONOS Provided [DN/(W/m(^2)sr)]</th>
<th>% Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 0.450 - 0.520</td>
<td>67.8 ± 2.6</td>
<td>72.8</td>
<td>-7.4%</td>
</tr>
<tr>
<td>2 0.510 - 0.600</td>
<td>71.2 ± 2.9</td>
<td>72.7</td>
<td>-2.1%</td>
</tr>
<tr>
<td>3 0.630 - 0.700</td>
<td>93.0 ± 3.3</td>
<td>94.9</td>
<td>-2.0%</td>
</tr>
<tr>
<td>4 0.760 - 0.850</td>
<td>82.3 ± 2.1</td>
<td>84.3</td>
<td>-2.4%</td>
</tr>
</tbody>
</table>

Percent difference is calculated by \((1 - \text{IKONOS/NASA Mean})\)
2004/2005 IKONOS Results Summary

- The NASA team of University of Arizona, South Dakota State University, and NASA SSC produce consistent results

- The IKONOS calibration coefficients continue to agree well with the NASA team estimate (within 2.5% except for blue band)

- The NASA team will continue to assess IKONOS radiometric accuracy
QuickBird Radiometric Characterization
QuickBird Data Acquisitions

<table>
<thead>
<tr>
<th>Site/Date</th>
<th>Overpass Time (UTC)</th>
<th>Satellite Elevation</th>
<th>Satellite Azimuth</th>
<th>Sun Elevation</th>
<th>Sun Azimuth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stennis 3/12/05</td>
<td>16:55</td>
<td>78 deg</td>
<td>270 deg</td>
<td>52.4 deg</td>
<td>149.2 deg</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Park Falls 8/5/05</td>
<td>17:20</td>
<td>69.3 deg</td>
<td>261.6 deg</td>
<td>59.4 deg</td>
<td>157.4 deg</td>
</tr>
</tbody>
</table>

Standard imagery
4x4 Cubic Convolution resampling

- Stennis Space Center, MS, 3/12/05
- Park Falls, WI, 8/5/05

![Graphs showing satellite and sun positions](image-url)
QuickBird Sample Calibration Summary

Red Band Calibration Summary

NASA Radiance = DN \times 0.19 \pm 0.01

QB Radiance = DN \times 0.18

Radiance [W/m^2 sr \mu m]

0 50 100 150 200 250

0 200 400 600 800 1000 1200 1400 1600

DN

1/17/2007
Average Spectral Radiance Calibration Coefficients

<table>
<thead>
<tr>
<th>Bandwidth FWHM (μm)</th>
<th>NASA Team Estimate (W/m² sr μm DN)</th>
<th>QuickBird Provided (W/m²sr μm DN)</th>
<th>% Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 0.445 - 0.510</td>
<td>0.26 ± 0.02</td>
<td>0.236</td>
<td>9.2%</td>
</tr>
<tr>
<td>2 0.500 - 0.595</td>
<td>0.16 ± 0.01</td>
<td>0.145</td>
<td>9.4%</td>
</tr>
<tr>
<td>3 0.620 - 0.690</td>
<td>0.19 ± 0.01</td>
<td>0.179</td>
<td>5.8%</td>
</tr>
<tr>
<td>4 0.755 - 0.875</td>
<td>0.14 ± 0.01</td>
<td>0.135</td>
<td>3.6%</td>
</tr>
</tbody>
</table>

Percent difference is calculated by (1 – QuickBird/NASA Mean)
• The NASA team of University of Arizona, South Dakota State University, and NASA SSC produce consistent results

• The QuickBird calibration coefficients continue to agree reasonably well with the NASA team estimate (within 10%)

• The NASA team will continue to assess QuickBird radiometric accuracy
OrbView-3 Radiometric Characterization
OrbView-3 Data Acquisitions

Stennis Space Center

<table>
<thead>
<tr>
<th>Site/Date</th>
<th>Overpass Time (UTC)</th>
<th>Satellite Elevation</th>
<th>Satellite Azimuth</th>
<th>Sun Elevation</th>
<th>Sun Azimuth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stennis 3/12/05</td>
<td>16:53</td>
<td>76.1 deg</td>
<td>283.8 deg</td>
<td>52.0 deg</td>
<td>148.6 deg</td>
</tr>
</tbody>
</table>

Basic imagery

![Diagram showing Sun and OrbView positions on a coordinate system with elevation and azimuth angles.](image-url)
OrbView-3 Sample Calibration Summary

Red Band Calibration Summary

- NASA Radiance = DN * 0.27 ± 0.01
- OV Radiance = DN * 0.21

1/17/2007
Average Spectral Radiance Calibration Coefficients

<table>
<thead>
<tr>
<th>Bandwidth FWHM (μm)</th>
<th>NASA Team Estimate (W/m²sr μm DN)</th>
<th>OrbView Provided (W/m²sr μm DN)</th>
<th>% Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 0.450 - 0.520</td>
<td>0.35 ± 0.02</td>
<td>0.269</td>
<td>23.1%</td>
</tr>
<tr>
<td>2 0.520 - 0.600</td>
<td>0.31 ± 0.01</td>
<td>0.249</td>
<td>19.7%</td>
</tr>
<tr>
<td>3 0.625 - 0.695</td>
<td>0.27 ± 0.01</td>
<td>0.210</td>
<td>22.2%</td>
</tr>
<tr>
<td>4 0.760 - 0.900</td>
<td>0.18 ± 0.00</td>
<td>0.142</td>
<td>21.1%</td>
</tr>
</tbody>
</table>

Percent difference is calculated by \((1 - \text{OrbView/NASA Mean})\)
• The NASA team of University of Arizona, South Dakota State University, and NASA SSC produce consistent results

• The OrbView calibration coefficients do not appear to agree well with the NASA team estimate (~20% difference)

• Discussions with GeoEye™ (formerly ORBIMAGE®) personnel are ongoing to update the calibration coefficients

• The NASA team will continue to assess OrbView radiometric accuracy
Contributors

NASA Stennis Space Center
 Troy Frisbie
 Tom Stanley

Science Systems and Applications, Inc.
 Slawomir Blonski Mary Pagnutti Robert E. Ryan
 Brennan Grant Kenton Ross Steve Tate
 Kelly Knowlton

Computer Sciences Corporation
 Ronald Vaughan

This work was directed by the NASA Applied Sciences Directorate at the John C. Stennis Space Center, Mississippi. Participation in this work by Computer Sciences Corporation and by Science Systems and Applications, Inc., was supported under NASA Task Order NNS04AB54T.
Back-up
IKONOS Blue Band Calibration Summary

NASA Radiance = DN / 67.77 ± 2.56

IK Radiance = DN / 72.80
IKONOS Green Band Calibration Summary

Green Band Calibration Summary

NASA Radiance = DN / 71.19 ± 2.86

IK Radiance = DN / 72.70
IKONOS Red Band Calibration Summary

Red Band Calibration Summary

NASA Radiance = DN / 93.00 ± 3.31

IK Radiance = DN / 94.90
IKONOS NIR Band Calibration Summary

NASA Radiance = DN / 82.32 ± 2.07
IK Radiance = DN / 84.30
QuickBird Blue Band Calibration Summary

NASA Radiance = DN \times 0.26 \pm 0.02

QB Radiance = DN \times 0.24
QuickBird Green Band Calibration Summary

Green Band Calibration Summary

NASA Radiance = DN \times 0.16 \pm 0.01

QB Radiance = DN \times 0.15

1/17/2007
QuickBird Red Band Calibration Summary

Red Band Calibration Summary

NASA Radiance = DN * 0.19 ± 0.01
QB Radiance = DN * 0.18

1/17/2007
QuickBird NIR Band Calibration Summary

NIR Band Calibration Summary

NASA Radiance = DN * 0.14 ± 0.01

QB Radiance = DN * 0.14

1/17/2007
OrbView-3 Blue Band Calibration Summary

Blue Band Calibration Summary

NASA Radiance = DN \times 0.35 \pm 0.02

OV Radiance = DN \times 0.27
OrbView-3 Green Band Calibration Summary

Green Band Calibration Summary

NASA Radiance = DN $\times 0.31 \pm 0.01$

OV Radiance = DN $\times 0.25$
OrbView-3 Red Band Calibration Summary

Red Band Calibration Summary

NASA Radiance = DN ^ 0.27 ± 0.01

OV Radiance = DN ^ 0.21
OrbView-3 NIR Band Calibration Summary

NASA Radiance = DN * 0.18 ± 0.00

OV Radiance = DN * 0.14

1/17/2007