The current lidar data quality assessment methods are not adequate in the reporting of:

- The quality of calibration of lidar system, which is an essential indicator of the overall quality of data.
- The horizontal accuracy of the data.

The availability of standards are particularly important for large projects such as the proposed 3D Elevation Program (3DEP). Recognizing this, the U.S. Geological Survey has partnered with the American Society for Photogrammetry and Remote Sensing (ASPRS) to promote industry-accepted guidelines to assess the quality of lidar data.

The partnership has created a working group that includes all major lidar instrument manufacturers, data providers, and Government agencies (USGS, National Geospatial Survey, U.S. Army Corps of engineers, National Geospatial Intelligence Agency, etc.) partnered with the American Society for Photogrammetry and Remote Sensing (ASPRS) to develop a comprehensive data quality assurance framework.

Introduction

The USGS led working group has designed a three-pronged framework to improve lidar data’s geometric quality:

- Inter-swath quality: Defining procedures for measuring the inter-swath goodness of fit. These include defining three Data Quality Measures (DQMs).
- External quality: Suggesting the use of targets and Ground Control Points (GCPs) on natural surfaces of all slopes to measure the absolute accuracy.
- Rigorous calibration: Suggesting the use of rigorous sensor model based system calibration methods.

The framework is designed such that the processes for measuring the accuracy (both inter-swath and absolute) of lidar data are independent of the instrument, while calibration is based on its rigorous sensor model.

Lidar data external quality: using targets

The use of targets is not new to the geospatial industry as they have been used in conventional surveying, photogrammetry and also microwave/SAR based mapping. The first two targets require intensity data also be collected, while the other two targets can work with just the point cloud. Another method of using GCPs surveyed in open terrain (both horizontal and sloping terrain) is being investigated.

Lidar data quality assurance: through rigorous calibration

The above two processes are recommended for QC of lidar data. For Quality Assurance it is recommended that a lidar system be calibrated using rigorous modeling. Rigorous calibration methods are based on determining parameters describing the sensor model completely.

Since many parameters associated with a complete sensor model are proprietary, software to perform rigorous calibration can only be provided by the instrument manufacturer.

The rigorous calibration approach is robust, and since the process is automated the resulting swaths of data are consistent with each other and with external control.

Concluding remarks

- Prototype software that implements DQMs has been developed.
- Currently, DQM software is being tested and results analyzed by ASPRS volunteers.
- The ASPRS Guidelines on Geometric Quality of Lidar Data will incorporate the results of the analysis.
- It is expected that this USGS led ASPRS research will result in an across-the-board improvement in the quality of lidar data processing.
- The new DQMs will provide the geospatial community with the capability to procure and acquire lidar data of higher and quantifiable accuracy.